Это все параболы и у 1 и 2 ветви вверх, найдем точки пересечения с осью ох: x^2-5+1=0, x^2-4=0, x^2=4, x1=2, x2=-2, вершина параболы под осью ох от -2 до 2; (под осью ох у<0); ответ: х принадлежит промежутку (-2;2). Если ошибка в условии, то x^2-5x+1=0, Д=25-4*1*1=21, х1=(5+корень из21)/2; х2=(5-корень из 21)/2; ответ: х принадлежит промежутку ((5-кор.из21)/2; (5+кор.из21)/2). 2) Д<0, значит корней нет, вся парабола над осью ох, у>0, ответ: х принадлежит промежутку (-беск.;+бескон.) 3)-x^2+3x-1<0, x^2-3x+1>0; ветви вверх, найдем, пересекает ли парабола ось ох: x^2-3x+1=0, D=9-4*1*1=5; х1=(3+кор.из5)/2; х2= =(3-кор.из5)/2; вершина параболы под осью ох, там у<0; нам нужны ветви над осью ох, там у>0; ответ: х принадлежит (-беск.; (3-кор.из5)/2)U ((3+кор.из5)/2; +бескон.)
Войти
АнонимМатематика21 августа 15:52
Во сколько раз увеличится периметр квадрата и во сколько раз увеличится его площадь, если каждую сторону увеличить в
3 раза?
Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.
Если ошибка в условии, то x^2-5x+1=0, Д=25-4*1*1=21, х1=(5+корень из21)/2; х2=(5-корень из 21)/2; ответ: х принадлежит промежутку
((5-кор.из21)/2; (5+кор.из21)/2).
2) Д<0, значит корней нет, вся парабола над осью ох, у>0, ответ: х принадлежит промежутку (-беск.;+бескон.)
3)-x^2+3x-1<0, x^2-3x+1>0; ветви вверх, найдем, пересекает ли парабола ось ох: x^2-3x+1=0, D=9-4*1*1=5; х1=(3+кор.из5)/2; х2=
=(3-кор.из5)/2; вершина параболы под осью ох, там у<0; нам нужны ветви над осью ох, там у>0; ответ: х принадлежит (-беск.; (3-кор.из5)/2)U
((3+кор.из5)/2; +бескон.)