1) Область определения: 4 - 2x - x^2 > 0 x^2 + 2x - 4 < 0 x^2 + 2x + 1 - 5 < 0 (x+1)^2 - (√5)^2 < 0 (x+1-√5)(x+1+√5) < 0 x ∈ (-1-√5; -1+√5) Локальные экстремумы будут в точках, в которых производная равна 0. Производная
x = -1 ∈ (-1-√5; -1+√5)
Знаменатель > 0, потому что скобка (4-2x-x^2) > 0, по области определения логарифма. Числитель -2(x+1)>0 при x<-1, значит, график возрастает, а при x>-1 график убывает. Значит, -1 точка максимума. ответ: Наибольшее значение y(-1) = 4
2) Область определения: x^2 - 6x + 10 > 0 x^2 - 6x + 9 + 1 > 0 (x - 3)^2 + 1 > 0 Сумма квадрата и положительного числа положительна при любом x. x ∈(-oo; +oo) Локальные экстремумы будут в точках, в которых производная равна 0.
x = 3
Здесь все наоборот. Знаменатель тоже >0. Числитель 2(x-3)<0 при x<3 (график убывает) и 2(x-3)>0 при x>3 (график возрастает). Значит, 3 - точка минимума. ответ: Наименьшее значение y(3) = 2
Область определения:
4 - 2x - x^2 > 0
x^2 + 2x - 4 < 0
x^2 + 2x + 1 - 5 < 0
(x+1)^2 - (√5)^2 < 0
(x+1-√5)(x+1+√5) < 0
x ∈ (-1-√5; -1+√5)
Локальные экстремумы будут в точках, в которых производная равна 0.
Производная
x = -1 ∈ (-1-√5; -1+√5)
Знаменатель > 0, потому что скобка (4-2x-x^2) > 0, по области определения логарифма. Числитель -2(x+1)>0 при x<-1, значит, график возрастает, а при x>-1 график убывает. Значит, -1 точка максимума.
ответ: Наибольшее значение y(-1) = 4
2)
Область определения:
x^2 - 6x + 10 > 0
x^2 - 6x + 9 + 1 > 0
(x - 3)^2 + 1 > 0
Сумма квадрата и положительного числа положительна при любом x.
x ∈(-oo; +oo)
Локальные экстремумы будут в точках, в которых производная равна 0.
x = 3
Здесь все наоборот. Знаменатель тоже >0. Числитель 2(x-3)<0 при x<3 (график убывает) и 2(x-3)>0 при x>3 (график возрастает).
Значит, 3 - точка минимума.
ответ: Наименьшее значение y(3) = 2