видим здесь квадратное уравнение относительно tg x.
а ещё видим, что сумма показателей степеней равна 1-4+3 = 0, поэтому один корень =1, второй по т.Виетта =3
уравнение распадается на совокупность
tg x = 1
tg x = 3
выписываем решение:
x = arctg(1) + pi n, где ncZ
x = arctg(3) + pi k, где kcZ
ну можно ещё вспомнить, что arctg(1) = pi/4
2) вспоминаем формулу косинуса двойного угла:
cos 2a = 2 cos^2 a - 1
если a = x/2, то исходное уравнение может быть представлено как
cos x + 1 + sin x = 0
вобщем, тут уже очевидно, что либо cos x =0, sin x =-1, либо cos x=-1, sin x =0
но чтобы совсем честно решать, придётся поколдовать.
синус направо и всё в квадрат!
(cos x +1)^2 = sin^2 x
cos^2 x + 2 cos x + 1 = 1 - cos^2 x
2 cos^2 x + 2 cos x = 0
cos x (cos x + 1) = 0
произведение обращается в ноль если хотя бы один из множителей обращается в ноль. значит опять совокупность:
cos x = 0
cos x = -1
x = pi/2 + pi n , ncZ,
x = pi + 2pi k, kcZ
но тут небольшая грабля. чуть выше мы возводили к вадрат. а нулевому косинусу соответствуют два значения синуса: +1 и -1. и один из них нам не подходит.
вобщем, проверяем корни и убеждемся, что из первой последователности половина значений выпадает (pi/2 + 2pi n НЕ являются корями. а pi/2 + pi + 2pi n - удовлетворяют)
1) tg x + 3/tg x = 4, ОДЗ tg x <> 0
множим уравнение на tg(x), который по ОДЗ не ноль
(tg x)^2 - 4 tg x + 3 = 0
видим здесь квадратное уравнение относительно tg x.
а ещё видим, что сумма показателей степеней равна 1-4+3 = 0, поэтому один корень =1, второй по т.Виетта =3
уравнение распадается на совокупность
tg x = 1
tg x = 3
выписываем решение:
x = arctg(1) + pi n, где ncZ
x = arctg(3) + pi k, где kcZ
ну можно ещё вспомнить, что arctg(1) = pi/4
2) вспоминаем формулу косинуса двойного угла:
cos 2a = 2 cos^2 a - 1
если a = x/2, то исходное уравнение может быть представлено как
cos x + 1 + sin x = 0
вобщем, тут уже очевидно, что либо cos x =0, sin x =-1, либо cos x=-1, sin x =0
но чтобы совсем честно решать, придётся поколдовать.
синус направо и всё в квадрат!
(cos x +1)^2 = sin^2 x
cos^2 x + 2 cos x + 1 = 1 - cos^2 x
2 cos^2 x + 2 cos x = 0
cos x (cos x + 1) = 0
произведение обращается в ноль если хотя бы один из множителей обращается в ноль. значит опять совокупность:
cos x = 0
cos x = -1
x = pi/2 + pi n , ncZ,
x = pi + 2pi k, kcZ
но тут небольшая грабля. чуть выше мы возводили к вадрат. а нулевому косинусу соответствуют два значения синуса: +1 и -1. и один из них нам не подходит.
вобщем, проверяем корни и убеждемся, что из первой последователности половина значений выпадает (pi/2 + 2pi n НЕ являются корями. а pi/2 + pi + 2pi n - удовлетворяют)
ответ
x = 3pi/2 + 2pi n , ncZ,
x = pi + 2pi k, kcZ
ответ: 120*a^4*b^9*c^2
Решаем по действиям:1. 4*2.5=10 X2.5 _ _4_ 10 2. a*a^2=a^3 a*a^2=a^(1+2) 2.1. 1+2=3 +1 _2_ 33. (-10*a^3*b^3)*(-4*a*b^3)=-10*a^3*b^3*(-4*a*b^3)4. 10*a^3*b^3*(-4*a*b^3)=-10*a^3*b^3*4*a*b^35. 10*4=40 X10 _4_ _ 406. a^3*a=a^4 a^3*a=a^(3+1) 6.1. 3+1=4 +3 _1_ 47. b^3*b^3=b^6 b^3*b^3=b^(3+3) 7.1. 3+3=6 +3 _3_ 68. -(-40*a^4*b^6)=40*a^4*b^69. 40*3=120 X40 _3_ _ 12010. b^6*b^3=b^9 b^6*b^3=b^(6+3) 10.1. 6+3=9 +6 _3_ 9
Решаем по шагам:1. (-10*a*b^3*a^2)*(-4*a*b^3)*c^2*3*b^3 1.1. 4*2.5=10 X2.5 _ _4_ 10 2. (-10*a^3*b^3)*(-4*a*b^3)*c^2*3*b^3 2.1. a*a^2=a^3 a*a^2=a^(1+2) 2.1.1. 1+2=3 +1 _2_ 33. (-10*a^3*b^3*(-4*a*b^3))*c^2*3*b^3 3.1. (-10*a^3*b^3)*(-4*a*b^3)=-10*a^3*b^3*(-4*a*b^3)4. (-(-10*a^3*b^3*4*a*b^3))*c^2*3*b^3 4.1. 10*a^3*b^3*(-4*a*b^3)=-10*a^3*b^3*4*a*b^35. (-(-40*a^3*b^3*a*b^3))*c^2*3*b^3 5.1. 10*4=40 X10 _4_ _ 406. (-(-40*a^4*b^3*b^3))*c^2*3*b^3 6.1. a^3*a=a^4 a^3*a=a^(3+1) 6.1.1. 3+1=4 +3 _1_ 47. (-(-40*a^4*b^6))*c^2*3*b^3 7.1. b^3*b^3=b^6 b^3*b^3=b^(3+3) 7.1.1. 3+3=6 +3 _3_ 68. 40*a^4*b^6*c^2*3*b^3 8.1. -(-40*a^4*b^6)=40*a^4*b^69. 120*a^4*b^6*c^2*b^3 9.1. 40*3=120 X40 _3_ _ 12010. 120*a^4*b^9*c^2 10.1. b^6*b^3=b^9 b^6*b^3=b^(6+3) 10.1.1. 6+3=9 +6 _3_ 9