A_n=n!/3^n. Очевидно, что ряд расходится, так как его члены возрастают с ростом n (при переходе от a_n к a_(n+1) числитель умножается на все большие и большие числа, а знаменатель стабильно умножается на 3.
Если Вы "не верите глазам своим", и Вам нужно, чтобы Даламбер или Коши поручились за расходимость ряда, давайте воспользуемся Даламбером (Коши тоже мог бы взяться за это, но пришлось бы вспоминать формулу Стирлинга, а зачем нам это нужно, если Даламбер сам справляется. В детстве все, конечно, слышали страшилки о том, что существуют ряды, которые Даламберу не по зубам, а Коши с ними справляется, но если честно, многие ли из Вас встречались в жизни с такими рядами?)
3. (x-4)(x+1)=0⇒x=4 или x= - 1 В этих задачах решение в целых числах ничем не отличается от решений в действительных числах (когда у нас квадратное уравнение, какая разница какие решения мы ищем - по любому нужно вычислять дискриминант или угадывать разложение устно. Специфика целых чисел видна в случае решения уравнения с двумя неизвестными.
Примеры: 1. x^2+y^2=25. Ясно, что |x|≤5; |y|≤5; далее перебор.
2. xy-2x+3y-8=0; (x+3)(y-2)=2 2 как произведение двух целых чисел число 2 получается только в четырех случаях 1·2=2·1=(-1)(-2)=(-2)(-1).
Если Вы "не верите глазам своим", и Вам нужно, чтобы Даламбер или Коши поручились за расходимость ряда, давайте воспользуемся Даламбером (Коши тоже мог бы взяться за это, но пришлось бы вспоминать формулу Стирлинга, а зачем нам это нужно, если Даламбер сам справляется. В детстве все, конечно, слышали страшилки о том, что существуют ряды, которые Даламберу не по зубам, а Коши с ними справляется, но если честно, многие ли из Вас встречались в жизни с такими рядами?)
Итак, a_n=n!/3^n;
a_(n+1)=(n+1)!/3^(n+1)=(n+1)· n!/(3·3^n)⇒
lim a_(n+1)/a_n=lim (n+1)/3=∞>1⇒ряд расходится
2. (x-6)(x-2)=0⇒ x=6 или x=2
3. (x-4)(x+1)=0⇒x=4 или x= - 1
В этих задачах решение в целых числах ничем не отличается от решений в действительных числах (когда у нас квадратное уравнение, какая разница какие решения мы ищем - по любому нужно вычислять дискриминант или угадывать разложение устно.
Специфика целых чисел видна в случае решения уравнения с двумя неизвестными.
Примеры:
1. x^2+y^2=25. Ясно, что |x|≤5; |y|≤5; далее перебор.
2. xy-2x+3y-8=0;
(x+3)(y-2)=2
2 как произведение двух целых чисел число 2 получается только в четырех случаях
1·2=2·1=(-1)(-2)=(-2)(-1).
Вот и перебирайте все четыре.