ответ:Рамаяна – это древнеиндийский рассказ Вальмики о совместных приключениях божественной пары, где Вишну представлен в воплощении царя Рамы, а Лакшми — царской жены Ситы. Предлагаем прочитать короткое содержание «Рамаяны» — древнеиндийской героической поэмы.
В противоположность «Махабхарате», к которой прилагаются эпитеты итихаса (легенда, сага) и пурана (былина), Рамаяна относится к кавья, то есть к искусственным поэмам. Обыкновенно предполагается, что сюжет «Рамаяны» имеет характер аллегорический и изображает под видом подвигов Рамы распространение индоарийских племён на юг Индии до острова Шри-Ланка; но нет ничего невероятного в предположении, что в основу этой аллегорической легенды был положен какой-то древний миф.
Проведем радиусы окружности к точкам касания со сторонами квадрата, как показано на рисунке. Обозначим ключевые точки A, B, C и D. ABCD образует четырехугольник. В этом четырехугольнике: ∠A=90° (по определению квадрата). ∠B=∠D=90° (по свойству касательной). Тогда и ∠С=90° (так как сумма углов четырехугольника равна 360°). Т.е. ABCD - прямоугольник (по определению). По свойству прямоугольника: AB=CD=R AD=BD=R Т.е. ABCD - квадрат. Из рисунка очевидно, что радиус равен половине стороны квадрата: R=56/2=28
ответ:Рамаяна – это древнеиндийский рассказ Вальмики о совместных приключениях божественной пары, где Вишну представлен в воплощении царя Рамы, а Лакшми — царской жены Ситы. Предлагаем прочитать короткое содержание «Рамаяны» — древнеиндийской героической поэмы.
В противоположность «Махабхарате», к которой прилагаются эпитеты итихаса (легенда, сага) и пурана (былина), Рамаяна относится к кавья, то есть к искусственным поэмам. Обыкновенно предполагается, что сюжет «Рамаяны» имеет характер аллегорический и изображает под видом подвигов Рамы распространение индоарийских племён на юг Индии до острова Шри-Ланка; но нет ничего невероятного в предположении, что в основу этой аллегорической легенды был положен какой-то древний миф.
Альбрехт Веберответ: радиус равен 28
Объяснение:
Проведем радиусы окружности к точкам касания со сторонами квадрата, как показано на рисунке. Обозначим ключевые точки A, B, C и D. ABCD образует четырехугольник. В этом четырехугольнике: ∠A=90° (по определению квадрата). ∠B=∠D=90° (по свойству касательной). Тогда и ∠С=90° (так как сумма углов четырехугольника равна 360°). Т.е. ABCD - прямоугольник (по определению). По свойству прямоугольника: AB=CD=R AD=BD=R Т.е. ABCD - квадрат. Из рисунка очевидно, что радиус равен половине стороны квадрата: R=56/2=28