В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Maybejuliar1337
Maybejuliar1337
27.08.2021 23:51 •  Алгебра

для контрольной работы учащимся предложили тест из 8 заданий количество верных ответов полученных каждым учащимся учимся из 48 представлено в таблице

Показать ответ
Ответ:
amid2003
amid2003
11.09.2022 17:31
Площадь треугольника полупроизведение сторон и синус угла между ними
S=0,5*a*b*sinx
поскольку это равнобедренный треугольник, то стороны а и b одно и тоже
плюс нам дан угол и площадь
т.е. можно переписать формулу площади уже с известными нам величинами
36 \sqrt{3} =0,5*a*a*sin120\\
36 \sqrt{3}=0,5*a^2* \frac{ \sqrt{3} }{2} \\
144=a^2\\
a=12
значит боковые стороны равны 12
если в этом треугольнике провести высоту(биссектрису(медиану)), то получится два прямоугольных треугольника с углами 60,30,90
половина основания лежит против угла в 60 градусов, используем синус:
sin60= \frac{c}{a}\\
 \frac{ \sqrt{3} }{2} *a=c\\
 \frac{ \sqrt{3} }{2} *12=c\\
c=6 \sqrt{3}
поскольку это половинка основания, то все основание будет в два раза больше
итоговый ответ: стороны равны 12,12,12 \sqrt{3}
0,0(0 оценок)
Ответ:
гглол
гглол
29.09.2020 16:02
y (x)= |2 - \sqrt{5 + |x| } | \\
областью определения y(x) будет x€R
(5+|x|>0 при любых x)

Теперь найдем множество значений, исходя из свойств модуля и квадратного корня
|x| \geqslant 0
5 + |x | \geqslant 5
\sqrt{5} \geqslant \sqrt{5 + |x| } \geqslant 0
2 - \sqrt{5 + |x|} \leqslant 2 - \sqrt{5}
y(x) = |2 - \sqrt{5 + |x|} | \geqslant \\ \geqslant | 2 - \sqrt{5} | = \sqrt{5} - 2 0
как мы видим нулей функции у(х) нет

теперь раскроем внутренний модуль,
а затем внешний

y (x)= |2 - \sqrt{5 + |x| } | \\ = \left \{ |{ 2 - \sqrt{5 + x} |} , x \geqslant 0 \atop |{2 - \sqrt{5 - x} | , \: x < 0} \right. = \\ = \left \{ { - 2 + \sqrt{5 + x} } , x \geqslant 0 \atop { - 2 + \sqrt{5 - x} , \: x < 0} \right.

внешний модуль раскрывается основываясь на сравнении значения квадратного корня и 2 при значениях х из заданных интервалов.

из вида функции и свойств квадратного корня мы видим , что
при х>0 функция возрастает
при х<0 функция убывает

причём минимум функции будет при х=0

y (0)= |2 - \sqrt{5 + |0| } | = \\ = \sqrt{5} - 2 \\

Функции , составляющие y(x)

y_1 = { - 2 + \sqrt{5 + x}} \\ y_2 = { - 2 + \sqrt{5 - x}}
строятся на основе функции
\sqrt{x}
соответствующими сдвигами вдоль осей ординат и абсцисс

Финальный график - см на фото

удачи!

Постройте график функции. укажите область определения, множество значений, промежутки монотонности,
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота