Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов: 3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры: 4x2 + 15x2 = 19x2 5ab – 1,7ab = 3,3ab 13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов: 2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x 2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу: 2 * 3 = 3 + 3 = 2 + 2 + 2
1. Найдите производные функций
А) y= x6 y`=6x5
б) y = 2 y`=0
в) y=5/x y`=-5/x^2
г) y = 3-5x y=-5
д) y= 8 √x + 0,5 cos x y`=4/Vx -0.5sinx
е) y=sinx / x y`={xcosx-sinx}/x^2
ж) y= x ctg x y`={ctgx-x/sin^2x}=cosx/sinx- x/sin^2x={cosxsinx-x}/sin^2x
з) y= (5x + 1)^7 y`=5*7(5x+1)^6=35(5x+1)^6
2.Найдите угол, который образует с положительным лучом оси абсцисс касательная к графику функции:
y= x^8/8 – x^5/5 - x √3 – 3 в точке x0= 1
y`=x^7-x^4-V3 tga=y`(1)=1-1-V3=-V3 a=120*
3. Вычислите если f(x)=2cos x+ x2- +5 что надо?
4. Прямолинейное движение точки описывается законом s=t4 – t2(м). Найдите ее скорость в момент времени t=3с.
v=s`=4t3-2t
v(3)=4*27-2*3=108-6=102 м/с
5. Найдите все значения х, при которых выполняется неравенство f/(x)<0, если
f(x)= 81x – 3x3
f`=81-9x^2=9(3-x)(3+x)
-3 3
- + -
xe(-oo,-3)U(3,+oo)
6. Найдите все значения х, при которых выполняется равенство f/(x)=0, если f(x)=cos2x - x√3 и x€[0,4π].
Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:
3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x2 + 15x2 = 19x2
5ab – 1,7ab = 3,3ab
13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2