Решение: Обозначим объём воды в бассейне за 1(единицу), а наполнение водой бассейна в час первой трубой за (х), а второй трубой за час (у), тогда наполнение бассейна водой обеими трубами наполняется за: 1/ ((х+у)=6 (часов) Если наполнить бассейн первой трубой, бассейн наполнится за: 1/х=10 (часов) Решим эту систему уравнений: 1/(х+у)=6 1/х=10
1=6*(х+у) 1=10*х 1=6х+6у 1=10х Из второго уравнения найдём значение (х) х=1:10 х=0,1 Подставим значение (х) в уравнение: 1=6х+6у 1=6*0,1+6у 6у=1-0,6 6у=0,4 у=0,4 :6 у=4/10 : 6=4/10*6=4/60=2/15 И так как заполнение бассейна второй трубой в час равно у=2/15, то вторая труба заполнит бассейн за : 1 : 2/15=15/2=7,5 (часа)
ответ: Бассейн заполнится второй трубой за 7,5 часов
[ ] - это модуль? Обычно так обозначают целую часть числа. Ну ладно. При x < 1 [x - 1] = 1 - x x^2 + 3(1 - x) - 7 > 0 x^2 - 3x - + 3 - 7 > 0 x^2 - 3x - 4 > 0 (x - 4)(x + 1) > 0 x = (-oo; -1) U (4; +oo) Но по условию x < 1, поэтому x = (-oo; -1)
При x >= 1 [x - 1] = x - 1 x^2 + 3(x - 1) - 7 > 0 x^2 + 3x - 3 - 7 > 0 x^2 + 3x - 10 > 0 (x + 5)(x - 2) > 0 x = (-oo; -5) U (2; +oo) Но по условию x > 1, поэтому x = (2; +oo) ответ: (-oo; -1) U (2; +oo)
Вторая делается точно также При x < 6 [x - 6] = 6 - x Подставляем в квадратное неравенство При x >= 6 [x - 6] = x - 6 Тоже подставляем в квадратное неравенство
Обозначим объём воды в бассейне за 1(единицу), а наполнение водой бассейна в час первой трубой за (х), а второй трубой за час (у),
тогда наполнение бассейна водой обеими трубами наполняется за:
1/ ((х+у)=6 (часов)
Если наполнить бассейн первой трубой, бассейн наполнится за:
1/х=10 (часов)
Решим эту систему уравнений:
1/(х+у)=6
1/х=10
1=6*(х+у)
1=10*х
1=6х+6у
1=10х
Из второго уравнения найдём значение (х)
х=1:10
х=0,1
Подставим значение (х) в уравнение: 1=6х+6у
1=6*0,1+6у
6у=1-0,6
6у=0,4
у=0,4 :6
у=4/10 : 6=4/10*6=4/60=2/15
И так как заполнение бассейна второй трубой в час равно у=2/15,
то вторая труба заполнит бассейн за :
1 : 2/15=15/2=7,5 (часа)
ответ: Бассейн заполнится второй трубой за 7,5 часов
При x < 1 [x - 1] = 1 - x
x^2 + 3(1 - x) - 7 > 0
x^2 - 3x - + 3 - 7 > 0
x^2 - 3x - 4 > 0
(x - 4)(x + 1) > 0
x = (-oo; -1) U (4; +oo)
Но по условию x < 1, поэтому
x = (-oo; -1)
При x >= 1 [x - 1] = x - 1
x^2 + 3(x - 1) - 7 > 0
x^2 + 3x - 3 - 7 > 0
x^2 + 3x - 10 > 0
(x + 5)(x - 2) > 0
x = (-oo; -5) U (2; +oo)
Но по условию x > 1, поэтому
x = (2; +oo)
ответ: (-oo; -1) U (2; +oo)
Вторая делается точно также
При x < 6 [x - 6] = 6 - x
Подставляем в квадратное неравенство
При x >= 6 [x - 6] = x - 6
Тоже подставляем в квадратное неравенство