№1 1)(2х-3)² - формула квадрат разности. (2х)² - 2*2х*3+(-3)²=4х²-12х+9. 2)(4x-5)(4x+5) - формула разности квадратов. (4x-5)(4x+5)=16х² - 25.
№2 1) 81а²-4= (9а-2)(9а+2) 2)a²-8a+16=(а-4)²
№3 1)3(m-2)²-(2m+5)(2m-5)= 3(m²-4m+4)-(4m²-25)=3m²-12m+12-4m²+25=-m²-12m+37= -(m²+12m-37) 2)2(x+1)(x²-x-1) = вероятно ошибка во второй скобке,т.к. не складывается по формуле.
где |A| - определитель матрицы, а - транспонированная матрица алгебраических дополнений
Т.к. определитель матрицы не равен 0, то обратная матрица существует.
Находим матрицу миноров. Для каждого элемента матрицы соответствующий ему минор вычисляется по определителю матрицы 2х2, которая получается вычеркиванием соответствующей строки и столбца для этого элемента:
Получили следующую матрицу миноров:
Из матрицы миноров получим матрицу алгебраических дополнений заменой знака на противоположный у элементов матрицы миноров, у которых сумма номеров строк и столбца нечетна:
Следующим шагом получаем транспонированную матрицу алгебраических дополнений:
Обратная матрица:
Проверим, что произведение исходной и обратной матрицы равно единичной:
1)(2х-3)² - формула квадрат разности.
(2х)² - 2*2х*3+(-3)²=4х²-12х+9.
2)(4x-5)(4x+5) - формула разности квадратов.
(4x-5)(4x+5)=16х² - 25.
№2
1) 81а²-4= (9а-2)(9а+2)
2)a²-8a+16=(а-4)²
№3
1)3(m-2)²-(2m+5)(2m-5)= 3(m²-4m+4)-(4m²-25)=3m²-12m+12-4m²+25=-m²-12m+37= -(m²+12m-37)
2)2(x+1)(x²-x-1) = вероятно ошибка во второй скобке,т.к. не складывается по формуле.
№4
1)(x-1)²-(x-3)(x+2)=2
х²-2х+1-(х²+2х-3х-6)=2
х²-2х+1-х²-2х+3х+6=2
-х=-5
х=5
ответ: 5.
2)a²+2a+1=0
(а+1)²=0
а=-1
ответ:-1
А вообще тебе мой совет: выучи формулы сокращенного умножения)
Обратную матрицу найдем по формуле:
,
где |A| - определитель матрицы, а - транспонированная матрица алгебраических дополнений
Т.к. определитель матрицы не равен 0, то обратная матрица существует.
Находим матрицу миноров. Для каждого элемента матрицы соответствующий ему минор вычисляется по определителю матрицы 2х2, которая получается вычеркиванием соответствующей строки и столбца для этого элемента:
Получили следующую матрицу миноров:
Из матрицы миноров получим матрицу алгебраических дополнений заменой знака на противоположный у элементов матрицы миноров, у которых сумма номеров строк и столбца нечетна:
Следующим шагом получаем транспонированную матрицу алгебраических дополнений:
Обратная матрица:
Проверим, что произведение исходной и обратной матрицы равно единичной: