В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Marka9696
Marka9696
16.08.2022 23:42 •  Алгебра

Добрый день, , , с неравенством 4^(x^2+x-4) - 0,5^(-2x^2-2x-1)/0,2*5^(x)-1< =0

Показать ответ
Ответ:
ангелина555000
ангелина555000
08.06.2020 02:50

4^(x^2+x-4) - 0,5^(-2x^2-2x-1)/0,2*5^(x)-1 ≤ 0

Числитель = 4^(x^2+x-4) - 0,5^(-2x^2-2x-1) = 2^2(x^2+x-4) - 2^-1*(-2x^2-2x-1)=

=2^(2x^2 +2x -8) -2^(2x^2 +2x +1 ) = 2^(2x^2 +2x -8) (1 - 2^(-9)) .

2^(2x^2 +2x -8> 0 (при любом "х")

1-2^(-9) = 1 -1/512 > 0

Вывод: 2^(2x^2 +2x -8) (1 - 2^(-9)) > 0

В нашем неравенстве числитель положителен. Сама дробь ≤ 0. Значит, знаменатель должен быть < 0

0,2*5^x -1 < 0

5^-1*5^x -1 < 0

5^(x-1) -1 < 0

5^(x-1) < 1

5^(x-1) < 5^0

x -1 < 0

x < 1

ответ: х∈(-∞; 1)

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота