В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ovrvoin2
ovrvoin2
01.06.2020 03:44 •  Алгебра

Доказать,что число 10^327+56 делится на 11

Показать ответ
Ответ:
Whitestar123
Whitestar123
02.09.2020 09:48
10 ^{327} + 56 = 10......056
всего 328 знаков в числе

число делится на 11, если сумма чисел, стоящих на чётных местах равно сумме чисел, стоящих на нечётных местах.

нули считать не будем;)
Итак, нечётные места:
1 стоит на 1 месте, 5 стоит на 327 м
их сумма =6

6 стоит на чётном месте
поэтому , т.к 6=6, то
наше число делится на 11
0,0(0 оценок)
Ответ:
Мурочkина
Мурочkина
02.09.2020 09:48

10³²⁷+56=10*100¹⁶³+56≡10*1¹⁶³+1(mod 11)=10*1+1=10+1=11≡0(mod 11)

А это значит, что исходное число кратно 11.

В решении использовались свойства сравнения чисел по модулю

-------------

10^{327}+56=(11-1)^{327}+56= \sum\limits_{k=0}^{327} C^k_{327}*11^{327-k}*(-1)^k+56=11^{327}+C^1_{327}*11^{326}*(-1)+...(-1)^{327}+56=11^{327}-C^1_{327}*11^{326}+...-1+56=(11^{327}-C^1_{327}*11^{326}+...+C^{326}_{327}*11)+5*11

Каждый одночлен из суммы в скобках содержит в своем разложении на множители хотя бы одно число 11, а значит все выражение в скобках кратно 11. 5*11 кратно 11. Значит исходное число кратно 11

Был использован бином Ньютона

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота