В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ladalis22
ladalis22
15.10.2020 15:45 •  Алгебра

Доказать, что p> = 5 при делении на 6 даёт остаток 5 или 1

Показать ответ
Ответ:
juliana123456
juliana123456
16.08.2020 15:47
Простое число p≥5 является нечетным числом p=2k+1, k≥2, целое.
Нечетное число при делении на четное число 6 может давать только нечетные остатки (иначе, если остаток r четный, то p=6n+r - четное число как сумма двух четных).
Значит, остатки от деления на 6 могут быть только 1,3,5.
Если остаток был бы равен 3, то p=6n+3=3(2n+1) - было бы кратно 3, что невозможно, так как p - простое и больше 3.
Значит, остатки могут быть только 1 и 5.
Оба возможно, как легко убедиться на примере простого числа 7 (остаток 1) и простого числа 11 (остаток 5)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота