В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
юля2720
юля2720
03.06.2022 07:51 •  Алгебра

Доказать что последовательность имеет предел a=3

Показать ответ
Ответ:
Папарапдрд
Папарапдрд
31.07.2020 07:21
\{x_{n}\}=\{\frac{3n+5}{n-1}\}\\\\lim_{n\to \infty }\frac{3n+5}{n-1}=lim_{n\to \infty }\frac{3+\frac{5}{n}}{1-\frac{1}{n}}=[\, \frac{3+0}{1-0}\, ]=3

  \forall \varepsilon \ \textgreater \ o  \exists N , n\ \textgreater \ N : |\frac{3n+5}{n-1}-3|\ \textless \ \varepsilon  

|\frac{3n+5-3n+3}{n-1}|\ \textless \ \varepsilon \\\\|\frac{8}{n-1}|\ \textless \ \varepsilon \\\\\frac{8}{n-1}\ \textless \ \varepsilon \\\\8\ \textless \ \varepsilon (n-1)\\\\n\ \textgreater \ 1+\frac{8}{\varepsilon }\\\\N=1+\frac{8}{\varepsilon }
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота