В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
9159360948
9159360948
26.02.2021 18:17 •  Алгебра

Доказать, что при любом натуральном n> 2 делится на (x-1)(x^2-1)(x^3-1) многочлен

Показать ответ
Ответ:
Vlad44kostroma4
Vlad44kostroma4
23.05.2020 21:48

 (x-1)(x^2-1)(x^3-1)=(x-1)^3(x+1)(x^2-x+1)

 

из формулы a^n-b^n=(a-b)(a^(n-1)+a^(n-2)b+...+ab^(n-2)+b^(n-1)) (*)

верной для любых a иb, натуральных  n

получаем

что x^n-1 и x^(n-1)-1 и x^(n-2)-1 делятся на х-1, а значит их произведение делится на (x-1)^3

 

из трех идущих подряд натуральных чисел n-2, n-1, n хотя бы одно число четное(делится на 2) а значит один из этих трех множителей по той же формуле (*) делится на (x^2-1)=(x-1)(x+1) а значит и на (x+1)

 

из трех идущих подряд натуральных чисел n-2, n-1, n хотя бы одно число делится на 3 а значит один из этих трех множителей по той же формуле (*) делится на (x^3-1)=(x-1)(x^2+x+1) а значит и на (x^2+x+1)

 

а значит и произведение делится на

(x-1)^3(x+1)(x^2-x+1)=(x-1)(x^2-1)(x^3-1)

доказано.

 

p.s.заметим что a^(kn)-b^(kn) делится без остатка на a^k-b^k

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота