Построим график уравнения у = |-x²-х+1| Для этого сначала строим график уравнения у = -x²-х+1. Видно что графиком будет парабола, направленная ветвями вниз. Найдём её вершину: x0 = -b/2a = 1/(-2) = -0.5 y0 = f(x0) = - (-0.5)² + 0.5 + 1 = 1.25 Значит вершина параболы находится в точке (-0.5; 1.25). Построив параболу (картинка 1), строим график уравнения у = |-x²-х+1|. Всё что находится на нашем графике ниже оси Оу отображаем симметрично этой же оси. Всё что выше - оставляем без изменений. У вас должен получиться график, показанный на картинке 2. а - семейство прямых, параллельных оси Oy. Эти прямые разбивают всю плоскость на различные интервалы. В каждом из интервалов существует определенное количество корней, в зависимости от значения параметра а (см. картинку 3). Конкретно, для а ∈ (-∞; 0), корней нет (т.к. весь график лежит выше или на оси Оу). Для а = 0, имеем 2 корня, для а ∈ (0; 1.25) - 4 корня, для а = 1.25 - 3 корня, для а ∈ (1.25; +∞), 2 корня. Легко заметить, что уравнение имеет ровно 3 корня только при одном значении параметра, при а = 1.25. ответ: при а = 1.25 .
Для этого сначала строим график уравнения у = -x²-х+1.
Видно что графиком будет парабола, направленная ветвями вниз. Найдём её вершину:
x0 = -b/2a = 1/(-2) = -0.5
y0 = f(x0) = - (-0.5)² + 0.5 + 1 = 1.25
Значит вершина параболы находится в точке (-0.5; 1.25).
Построив параболу (картинка 1), строим график уравнения у = |-x²-х+1|. Всё что находится на нашем графике ниже оси Оу отображаем симметрично этой же оси. Всё что выше - оставляем без изменений. У вас должен получиться график, показанный на картинке 2.
а - семейство прямых, параллельных оси Oy. Эти прямые разбивают всю плоскость на различные интервалы. В каждом из интервалов существует определенное количество корней, в зависимости от значения параметра а (см. картинку 3). Конкретно, для а ∈ (-∞; 0), корней нет (т.к. весь график лежит выше или на оси Оу). Для а = 0, имеем 2 корня, для а ∈ (0; 1.25) - 4 корня, для а = 1.25 - 3 корня, для а ∈ (1.25; +∞), 2 корня.
Легко заметить, что уравнение имеет ровно 3 корня только при одном значении параметра, при а = 1.25.
ответ: при а = 1.25 .
Домножим обе части на (20-b) - ОДЗ: b ≠ 20
(a+b)x² - (x+3a)(x-2b)(20-b) - 6ab(20-b) = 0
(a+b)x² - (x² + x(3a-2b) - 6ab)(20-b) - 6ab(20-b) = 0
(a+b)x² - 20x² - 20(3a-2b)x + 120ab + bx² + b(3a-2b)x - 6ab² - 6ab(20-b) = 0
(a+b-20+b)x² + (3ab - 2b² - 60a + 40b)x + 120ab - 6ab² - 120ab + 6ab² = 0
(a+2b-20)x² - (2b² + 60a - 40b - 3ab)x = 0
Для того чтобы равенство выполнялось для любых действительных х, нужно чтобы коэффициенты при х и свободный член равнялись 0. Составим систему:
a + 2b - 20 = 0
2b² + 60a - 40b - 3ab = 0
a = 20 - 2b
2b² + 60(20-2b) - 40b - 3(20-2b)b = 0 (*)
(*) 2b² + 1200 - 120b - 40b - 60b + 6b² = 0
8b² - 220b + 1200 = 0
2b² - 55b + 300 = 0
D = 55² - 4*2*300 = 625
b1 = (55-25)/4 = 30/4 = 7.5
b2 = (55+25)/4 = 80/4 = 20
Вернёмся к системе:
a = 20 - 2b
b1 = 7.5
b2 = 20
a1 = 5
b1 = 7.5
a2 = -20
b2 = 20
Но по ОДЗ b ≠ 20, а значит ответ единственный.
ответ: при а = 1, b = 7.5 .