Объяснение:
f(x) = x^2021 + a - заданная прямая функция.
f^(-1) (x) = корень 2021 степени из (x-a) - обратная функция.
Обратная функция имеет график, симметричный данному относительно прямой y = x.
Графики функции и обратной могут пересекаться только на прямой y = x.
Это значит, что функция сама должна пересекаться с прямой y = x.
Решаем уравнение и находим х при любом параметре а:
y = x^2021 + a = x
x = x^2021 + a
x^2021 - x + a = 0
Любой многочлен нечётной степени всегда имеет хотя бы один корень.
Поэтому при любом значении а будет хотя бы одно решение.
Объяснение:
f(x) = x^2021 + a - заданная прямая функция.
f^(-1) (x) = корень 2021 степени из (x-a) - обратная функция.
Обратная функция имеет график, симметричный данному относительно прямой y = x.
Графики функции и обратной могут пересекаться только на прямой y = x.
Это значит, что функция сама должна пересекаться с прямой y = x.
Решаем уравнение и находим х при любом параметре а:
y = x^2021 + a = x
x = x^2021 + a
x^2021 - x + a = 0
Любой многочлен нечётной степени всегда имеет хотя бы один корень.
Поэтому при любом значении а будет хотя бы одно решение.