Докажите, что любой показательной функции () = ⋅ и любой геометрической прогрессии {} с положительными членами найдется такая арифметической прогрессия {}, что для всех будет справедливо равенство () = .
Сервис поддерживает возможность построения графиков функций как вида , так и вида . Для того, чтобы построить график функции  на отрезке  нужно написать в строке: f[x],{x, a, b}. Если Вы хотите, чтобы диапазон изменения ординаты  был конкретным, например , нужно ввести: f[x],{x, a, b},{y, c, d}.
Примеры
x^2+x+2, {x,-1,1};
x^2+x+2, {x,-1,1},{y,-1,5};
Sin[x]^x, {x,-Pi,E};
Sin[x]^x, {x,-Pi,E},{y,0,1}.
Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:f[x]&&g[x]&&h[x]&&…&&t[x],{x, a, b}.
Примеры
x&&x^2&&x^3, {x,-1,1},{y,-1,1};
Sin[x]&&Sin[5x]&&Sin[10x]&&Sin[15x], {x,-5,5}.
Для того, чтобы построить график функции  на прямоугольнике , нужно написать в строке: f[x, y],{x, a, b},{y, c, d}. К сожалению, диапазон изменения аппликаты  пока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции  Вы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).
Построение графиков функций
Сервис поддерживает возможность построения графиков функций как вида , так и вида . Для того, чтобы построить график функции  на отрезке  нужно написать в строке: f[x],{x, a, b}. Если Вы хотите, чтобы диапазон изменения ординаты  был конкретным, например , нужно ввести: f[x],{x, a, b},{y, c, d}.
Примеры
x^2+x+2, {x,-1,1};
x^2+x+2, {x,-1,1},{y,-1,5};
Sin[x]^x, {x,-Pi,E};
Sin[x]^x, {x,-Pi,E},{y,0,1}.
Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:f[x]&&g[x]&&h[x]&&…&&t[x],{x, a, b}.
Примеры
x&&x^2&&x^3, {x,-1,1},{y,-1,1};
Sin[x]&&Sin[5x]&&Sin[10x]&&Sin[15x], {x,-5,5}.
Для того, чтобы построить график функции  на прямоугольнике , нужно написать в строке: f[x, y],{x, a, b},{y, c, d}. К сожалению, диапазон изменения аппликаты  пока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции  Вы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).
Примеры
Sin[x^2+y^2],{x,-1,-0.5},{y,-2,2};
xy,{x,-4,4},{y,-4,4}.
для того, чтобы найти пересечение графика функции с осью OX, нужно приравнять y к 0.
1. 0 = 2x - 5 / x + 3
т. к. уравнение равно нулю, то: 2x - 5 = 0
2x = 5
x = 5/2 = 2,5
график пересекается с осью OX в точке с абсциссой 2,5
2. (x-4)(3x - 15) = 0
3x² - 27x + 60 = 0
решаем квадратное уравнение. получаем: x1 = 4, x2 = 5
и график функции пересекает ось OX в двух точках с абсциссами 4 и 5
3. 2x - 5x + 6 = 0
-3x + 6 = 0
3x - 6 = 0
3x = 6
x = 2
график пересекается с осью OX в точке с абсциссой 2
4. x³ - 7x² +12x = 0
x(x² - 7x + 12) = 0
x1 = 0
x² - 7x +12 = 0
решаем квадратное уравнение. получаем: x1 = 3, x2 = 4
график функции пересекается с осью OX в трех точках с абциссами 0, 3, 4.