(а+5)х²-(а+6)х+3=0 D=(-(-(a+6))²-4×(a+5)×3=(a+6)²-12(a+5)=a²+12a+36-12a-60=a²-24 чтобы найти а, необходимо D>=0 ( больше либо равно) при данном условии квадратное (а+5)х²-(а+6)х+3=0 уравнение имеет решение.
а²-24>=0 а²>=24 а1>=√24 а2>=-√24
Проверка:
а=-6-истина.
(-6+5)х²-(-6+6)х+3=0 -х²+3=0 -х²=-3|×(-1) х²=3 х 1=√3 х2=-√3
Найдём корни из промежутка [-П, П/3] ,для этого будем поочерёдно подставлять вместо n целые числа, отрицательные, ноль и положительные и следить, чтобы не выйти из заданного промежутка.
D=(-(-(a+6))²-4×(a+5)×3=(a+6)²-12(a+5)=a²+12a+36-12a-60=a²-24
чтобы найти а, необходимо D>=0 ( больше либо равно) при данном условии квадратное (а+5)х²-(а+6)х+3=0 уравнение имеет решение.
а²-24>=0
а²>=24
а1>=√24
а2>=-√24
Проверка:
а=-6-истина.
(-6+5)х²-(-6+6)х+3=0
-х²+3=0
-х²=-3|×(-1)
х²=3
х 1=√3
х2=-√3
а=6- истина.
(6+5)х²-(6+6)х+3=0
11х²-12х+3=0
D=(-(-12))²-4×11×3=144-132=12
x1=(-(-12)-√12)/2×11=(12-√12)/22=(12-3,46)/22=8,54/22=0,3882
x2=(-(-12)+√12)/2×11=(12+√12)/22=(12+3,46)/22=15,46/22=0,7029
ответ: а€N, где N€(-беск.;-√24] и N€[√24;+беск.), €-знак принадлежит.
(1 - Cos2x)*Sin2x = √3Sin²x
2Sin²x * Sin2x - √3Sin²x = 0
Sin²x(2Sin2x - √3) = 0
Sin²x = 0 2Sin2x - √3 = 0
Sinx = 0 Sin2x = √3/2
x = Пn, n э z 2x = (-1)^n*arcSin√3/2 + Пn, n э z
2x = (-1)^n*П/3 + Пn, n э z
x = (-1)^n*П/6 + Пn/2, n э z
Найдём корни из промежутка [-П, П/3] ,для этого будем поочерёдно подставлять вместо n целые числа, отрицательные, ноль и положительные и следить, чтобы не выйти из заданного промежутка.
- П, - 5П/6, - 2П/3, - П/3, - П/6, 0, П/6, П/3