В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
dgony2003
dgony2003
05.06.2021 10:12 •  Алгебра

Докажите, что при любом n квадрат размера 2^n на 2^n без одной угловой клетки можно разбить на уголки из трёх клеток

Показать ответ
Ответ:
Daniilkv
Daniilkv
17.06.2020 06:50

База индукции: Квадрата два на два, у которого отсутствует одна угловая клетка, естественным образом разбивается на уголки из трёх клеток (Рис. 3).

 

Индукционное предположение: Квадрат 2^k на 2^k с отсутствующей угловой клеткой можно разбить на уголки из трёх клеток.

 

Индукционный шаг: Пусть есть квадрат 2^{k+1} на 2^{k+1}, разобъем его на четыре части так, как указано на Рис. 1. Получим четыре квадрата 2^k на 2^k и четыре незаполненных клетки, три из которых можно заполнить уголком (на Рис. 2 синий). Квадраты же 2^k на 2^k  без угловных клеток мы можем заполнить согласно индукционному предположению.

 

Вывод: Квадрат 2^{n} на 2^{n} , без угловой клетки можно разбить на уголки из трёх клеток для \forall \ n \in N


Докажите, что при любом n квадрат размера 2^n на 2^n без одной угловой клетки можно разбить на уголк
Докажите, что при любом n квадрат размера 2^n на 2^n без одной угловой клетки можно разбить на уголк
Докажите, что при любом n квадрат размера 2^n на 2^n без одной угловой клетки можно разбить на уголк
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота