Поскольку необходимо представить число 68 в виде суммы двух чисел, то пусть первое число х, тогда второе число (68-х). Тогда сумма квадратов слагаемых будет равна: х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя 1) с производной (2х²-136х+4624)'=4x-136 4x-136=0 4x=136 x=136:4 х=34 Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика y=2х²-136х+4624 Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы. х₀=-b/2a=-(-136)/4=34
Тогда сумма квадратов слагаемых будет равна:
х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя
1) с производной
(2х²-136х+4624)'=4x-136
4x-136=0
4x=136
x=136:4
х=34
Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика
y=2х²-136х+4624
Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы.
х₀=-b/2a=-(-136)/4=34
34+34=68
Объяснение:
рассмотрим параллельный ряд тонких полос на расстоянии D > d друг от друга
монета размером d попадет внутрь и не заденет полосы с вероятностью (D-d)/D
второй ряд перпендикулярен первому
имеет тот-же размер
монета размером d попадет внутрь второго ряда и не заденет полосы с вероятностью (D-d)/D
так как ряды перпендикулярны то события попадания и непопадания на полосы одного и другого ряда независимы
значит вероятность монеты размером d не пересечь ни одной из сторон квадрата размером D является произведением двух вероятностей
( (D-d)/D ) ^2 = 0,4
( (D-d)/D ) = корень(0,4)
1 - d/D = корень(0,4)
1 - корень(0,4) = d/D
D = d/(1 - корень(0,4) ) ~ 2,7 * d
ответ D ~ 2,7 * d