Преобразуем уравнение к виду x-ln(x)=1. Рассмотрим фунцию, стоящую в его левой части. . При x>1 ее производная положительна, при 0<x<1 отрицательна, при x=1 равна нулю. Следовательно, x=1 - минимум этой функции, а поскольку рассмотренные промежутки монотонности покрывают всю область определения, в этой точке принимается наименьшее значение, т.е. при x≠1 L(x)>L(1). Находим, что L(1)=1, откуда x=1 является решением уравнения, а любое другое число - нет. ответ: 1.
.
При x>1 ее производная положительна, при 0<x<1 отрицательна, при x=1 равна нулю. Следовательно, x=1 - минимум этой функции, а поскольку рассмотренные промежутки монотонности покрывают всю область определения, в этой точке принимается наименьшее значение, т.е. при x≠1 L(x)>L(1). Находим, что L(1)=1, откуда x=1 является решением уравнения, а любое другое число - нет.
ответ: 1.