1.)2х+5у=36 и 2х-5у=-44 складываете первое и второе уравнение , получили 4х=-8 х=-2 В любое уравнение подставить х=-2 , например , в первое : 2·(-2)+5у=36 -4+5у=36 5у=36+4 5у=40 у=40:5 у=8 ответ : (-2;8) 2)9у-4х=-13 и -4х-9у=-67 складываем первое и второе уравнение , получим -8х=-80 ( складывайте только соответствующие переменные и значения ) х=10 подставить х=10 в любое уравнение системы , например , во второе: -4·10-9у=-67 -40-9у=-67 -9у=-67+40 -9у=-27 у=-27:(-9) у=3 ответ:(10;3) 3)7у-9х=36 и -9х-7у=-90 Складываем первое и второе уравнение системы 7у+(-7у)-9х+(-9х)=-90+36 -18х=-54 х=3 подставим значение х=3 в любое уравнение системы , например , в первое : 7у-9·3=36 7у-27=36 7у=27+36 7у=63 у=63:7 у=9 ответ:(3;9)
Объяснение:
Линейное уравнение — это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна 1.
Общий вид aх + b = 0, где a и b произвольные числа.
Примеры:
2х + 3= 7 – 0,5х;
0,3х = 0;
x/2 + 3 = 1/2 (х – 2).
Имеет один единственный корень.
***
Алгебраическое уравнение вида ax²+bx+c=0, где a,b,с - коэффициенты а≠0.
Уравнение может
- Не иметь корней;
- Иметь только один корень;
Иметь два различных корня.
В этом состоит важное отличие квадратных уравнений от линейных.
4х=-8
х=-2 В любое уравнение подставить х=-2 , например , в первое :
2·(-2)+5у=36
-4+5у=36
5у=36+4
5у=40
у=40:5
у=8
ответ : (-2;8)
2)9у-4х=-13 и -4х-9у=-67 складываем первое и второе уравнение , получим
-8х=-80 ( складывайте только соответствующие переменные и значения )
х=10
подставить х=10 в любое уравнение системы , например , во второе:
-4·10-9у=-67
-40-9у=-67
-9у=-67+40
-9у=-27
у=-27:(-9)
у=3
ответ:(10;3)
3)7у-9х=36 и -9х-7у=-90 Складываем первое и второе уравнение системы
7у+(-7у)-9х+(-9х)=-90+36
-18х=-54
х=3
подставим значение х=3 в любое уравнение системы , например , в первое : 7у-9·3=36
7у-27=36
7у=27+36
7у=63
у=63:7
у=9
ответ:(3;9)