В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
sofiika17
sofiika17
06.09.2021 13:13 •  Алгебра

Докажите, используя принцип математической индукции, что значение выражения 9^n - 8n - 1 делится на 16 при любом натуральном значении n.

Показать ответ
Ответ:
nova9696
nova9696
22.11.2021 06:00

1) Проверим справедливость утверждения при n=1:

9^1 - 8\cdot1 - 1=9-8-1=0\ \vdots\ 16

2) Предположим, что при n=k утверждение справедливо, то есть:

(9^k - 8k- 1)\ \vdots\ 16

3) Докажем, что при n=k+1 справедливо утверждение:

\left(9^{k+1} - 8(k+1)- 1\right)\ \vdots\ 16

Доказательство. Преобразуем:

9^{k+1} - 8(k+1)- 1=9\cdot9^k - 8k-8- 1=

=(9^k- 8k-1)+8\cdot9^k -8=(9^k- 8k-1)+8(9^k -1)

Первое слагаемое 9^k- 8k-1 делится на 16 по предположению, сделанному на втором шаге.

9^{k+1} - 8(k+1)- 1=\underset{\vdots\ 16}{\underbrace{(9^k- 8k-1)}}+8(9^k -1)

Рассмотрим второе слагаемое 8(9^k -1). Первый множитель 8 делится на 8. Заметим, что второй множитель является четным, так как выражение 9^k при k\in\mathbb{N} дает нечетные числа, тогда числа вида 9^k -1 являются четными. Таким образом, второе слагаемое делится на 8\cdot2=16.

9^{k+1} - 8(k+1)- 1=\underset{\vdots\ 16}{\underbrace{(9^k- 8k-1)}}+\underset{\vdots\ 16}{\underbrace{8(9^k -1)}}

Итак, оба слагаемых делятся на 16. Значит и вся сумма делится на 16. Доказано.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота