Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
Чтоб проверить проходит ли график уравнения через точку, нужно, значение точки подставить в уравнение.
а) А(3; 1), 3х + 4у = 2,
3 * 3 + 4 * 1 = 2;
9 + 4 = 2;
13 ¥ 2. (¥ - не равно)
Значит, график уравнения не проходит через данную точку.
б) В(2; 1), 3х + 4у = 2,
3 * 2 + 4 * 1 = 2;
6 + 4 = 2;
10 ¥ 2.
Значит, график уравнения не проходит через данную точку.
в) С(- 2; - 2), 3х + 4у = 2,
3 * (- 2) + 4 * (-.2) = 2;
- 6 - 8 = 2;
- 14 ¥ 2.
Значит график уравнения не проходит через данную точку.
ответ: точки не принадлежат графику
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше