А) Определить кол-во корней можно используя дискриминант.
D > 0 => уравнение имеет ровно 2 корня,
D = 0 => уравнение имеет ровно 1 корень,
D < 0 => уравнение не имеет корней.
1) 2x^2-3x+6=0
a = 2, b = − 3, c = 6
D = (− 3)2 − 4 · 2 · 6 = 9 − 4 · 12 = − 39 - уравнение не имеет корней
2) 5x^2-x-4=0
a = 5, b = − 1, c = − 4
D = (− 1)2 − 4 · 5 · (− 4) = 1 − 4 · (− 20) = 1 + 4 · 20 = 81 - имеет 2 корня
Б)Так как корни имеет лишь 2-е уравнение то для него и найдем корни
x1 = (1 - √81)/(2·5) = (1 - 9)/10 = -8/10 = -0.8
x2 = (1 + √81)/(2·5) = (1 + 9)/10 = 10/10 = 1
1. S(км) V(км/ч) t(ч)
По течению 45 v+2 45/v+2
Против течения 45 v-2 45/v-2
Пусть v - собственная скорость лодки.
(45/v+2)+(45/v-2 )=14
Домножим 1 скобку на (v-2) 2 на (v+2), 14 на (v+2)(v-2)
((45v-90+45v+90)-(14*(v-2)(v+2)))/(v-2)(v+2)=0
-14v^2+90v+56=0 (v-2)(v+2)не=0
Разделим обе части на -2 vне=2; vне=-2
7v^2-45v-28=0
D=(-45)^2-4*7*(-28)=2809.
v1=(45+53)/14=7.
v2=(45-53)/14=-8/14
Т.к. скорость не может быть отрицательной, следовательно собственная скорость лодки равна 7 км/ч.
---
3. 1катет=х(см)
2катет=х+31(см)
гипотенуза=41(см)
По теореме Пифагора:
х^2+(x+31)^2=41^2
x^2+x^2+62x+961=1681
2x^2+62x-720=0
Разделим на 2:
x^2+31x-360=0
D=31^2-4*1*(-360)=2401.
x1=(-31+49)/2=9.
X2=(-31-49)/2=-40
Т.к. длина не может быть отрицательной, следовательно длина 1катета равна 9(см).
Длина 2катета=х+31
31+9=40(см)
1катет=9см, 2катет=40см.
А) Определить кол-во корней можно используя дискриминант.
D > 0 => уравнение имеет ровно 2 корня,
D = 0 => уравнение имеет ровно 1 корень,
D < 0 => уравнение не имеет корней.
1) 2x^2-3x+6=0
a = 2, b = − 3, c = 6
D = (− 3)2 − 4 · 2 · 6 = 9 − 4 · 12 = − 39 - уравнение не имеет корней
2) 5x^2-x-4=0
a = 5, b = − 1, c = − 4
D = (− 1)2 − 4 · 5 · (− 4) = 1 − 4 · (− 20) = 1 + 4 · 20 = 81 - имеет 2 корня
Б)Так как корни имеет лишь 2-е уравнение то для него и найдем корни
x1 = (1 - √81)/(2·5) = (1 - 9)/10 = -8/10 = -0.8
x2 = (1 + √81)/(2·5) = (1 + 9)/10 = 10/10 = 1
1. S(км) V(км/ч) t(ч)
По течению 45 v+2 45/v+2
Против течения 45 v-2 45/v-2
Пусть v - собственная скорость лодки.
(45/v+2)+(45/v-2 )=14
Домножим 1 скобку на (v-2) 2 на (v+2), 14 на (v+2)(v-2)
((45v-90+45v+90)-(14*(v-2)(v+2)))/(v-2)(v+2)=0
-14v^2+90v+56=0 (v-2)(v+2)не=0
Разделим обе части на -2 vне=2; vне=-2
7v^2-45v-28=0
D=(-45)^2-4*7*(-28)=2809.
v1=(45+53)/14=7.
v2=(45-53)/14=-8/14
Т.к. скорость не может быть отрицательной, следовательно собственная скорость лодки равна 7 км/ч.
---
3. 1катет=х(см)
2катет=х+31(см)
гипотенуза=41(см)
По теореме Пифагора:
х^2+(x+31)^2=41^2
x^2+x^2+62x+961=1681
2x^2+62x-720=0
Разделим на 2:
x^2+31x-360=0
D=31^2-4*1*(-360)=2401.
x1=(-31+49)/2=9.
X2=(-31-49)/2=-40
Т.к. длина не может быть отрицательной, следовательно длина 1катета равна 9(см).
Длина 2катета=х+31
31+9=40(см)
1катет=9см, 2катет=40см.