Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)
Решим к примеру уравнение в действительных корнях.
Рассмотрим функцию . Эта функция является возрастающей на всей числовой прямой.
Также рассмотрим правую часть уравнения: функцию . Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).
графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.
Возьмем теперь к примеру уравнение
Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.
Если D=0, то квадратное уравнение имеет два равные корни.
Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.
(1; 4); (4; 1)
{ x√x + y√y = 9
{ x√y + y√x = 6
Переходим к новым переменным
a = √x; x = a^2; x√x = a^3
b = √y; y = b^2; y√y = b^3
{ a^3 + b^3 = 9
{ a^2*b + ab^2 = 6
Умножим второе уравнение на 3
{ a^3 + b^3 = 9
{ 3a^2*b + 3ab^2 = 18
Складываем уравнения
a^3 + b^3 + 3a^2*b + 3ab^2 = 9 + 18
Слева записан куб суммы
(a + b)^3 = 27
a + b = 3
b = 3 - a
Подставляем
a^2*(3 - a) + a(3 - a)^2 = 6
a(3 - a)(a + 3 - a) = 6
3a(3 - a) = 6
a(3 - a) = 2
-a^2 + 3a = 2
a^2 - 3a + 2 = 0
(a - 1)(a - 2) = 0
1) a = 1; b = 2
x = a^2 = 1; y = b^2 = 4
(1; 4) - это решение.
2) a = 2; b = 1
x = a^2 = 4; y = b^2 = 1
(4; 1) - это решение.
Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)
Решим к примеру уравнение в действительных корнях.
Рассмотрим функцию . Эта функция является возрастающей на всей числовой прямой.
Также рассмотрим правую часть уравнения: функцию . Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).
графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.
Возьмем теперь к примеру уравнение
Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.
Если D=0, то квадратное уравнение имеет два равные корни.
Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.