Формула cos2x расписывается так cos^2x-sin^2x из этого выходит так cos^2x-sin^2x+sin^2x=0.75 sin сокращается и получается cos^2x=75/100(перевёл в дробь) 75/100= 15/20(сократил на 5 ) = 3/4 опять сократил получается cos^2x=3/4 cosx=/2 x=+-(плюс минус) п/6+2Пn (это можно записать в ответ ) для нахождения корней нужно немного по другому
теперь корни промежуток П и 5П/2 это 180 и 450 градусов надо вернуться к первому и расписать правильней cosx=/2 х=+-(П-П/6)+2Пn= +-5П/6+2Пn вот теперь в это уравнение +-5П/6+2Пn надо подставлять n=0 n=1 n=-1 и т. д. и если значения буду в диапазоне 180 и 450 градусов то они входят
x2 - 13x + 22 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-13)2 - 4·1·22 = 169 - 88 = 81Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 = 13 - √81 2·1 = 13 - 9 2 = 4 2 = 2x2 = 13 + √81 2·1 = 13 + 9 2 = 22 2 = 11
5x2 + 8x - 4 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = 82 - 4·5·(-4) = 64 + 80 = 144Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 = -8 - √144 2·5 = -8 - 12 10 = -20 10 = -2x2 = -8 + √144 2·5 = -8 + 12 10 = 4 10 = 0.4
(х-4)^ 2=0x^2 - 8x + 16 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-8)2 - 4·1·16 = 64 - 64 = 0Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:x = 8 2·1 = 4
x2 + 2x + 3 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = 22 - 4·1·3 = 4 - 12 = -8Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
(х-8)(х+3)=0x^2 -5x -24=0x2 - 5x - 24 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-5)2 - 4·1·(-24) = 25 + 96 = 121Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 = 5 - √121 2·1 = 5 - 11 2 = -6 2 = -3x2 = 5 + √121 2·1 = 5 + 11 2 = 16 2 = 8
из этого выходит так cos^2x-sin^2x+sin^2x=0.75
sin сокращается и получается cos^2x=75/100(перевёл в дробь)
75/100= 15/20(сократил на 5 ) = 3/4 опять сократил
получается cos^2x=3/4
cosx=/2
x=+-(плюс минус) п/6+2Пn (это можно записать в ответ ) для нахождения корней нужно немного по другому
теперь корни промежуток П и 5П/2 это 180 и 450 градусов
надо вернуться к первому и расписать правильней
cosx=/2
х=+-(П-П/6)+2Пn= +-5П/6+2Пn
вот теперь в это уравнение +-5П/6+2Пn надо подставлять n=0 n=1 n=-1 и т. д.
и если значения буду в диапазоне 180 и 450 градусов то они входят