В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
blackytwhite
blackytwhite
05.01.2021 06:00 •  Алгебра

(должно быть 4 пары ответов)

Показать ответ
Ответ:
mixa867
mixa867
04.10.2020 15:54

А вообще интересная задача, по ходу решения возникают некоторые интересности, которые обязательно отметим.

Перепишем уравнение в более красивый и читаемый вид:

Это уравнение приведенное уже, поэтому коэффициенты в таком виде.

Теперь запишем теорему Виета:

Но нам нужна сумма квадратов корней уравнения, но это не проблема, у нас есть все, чтобы выразить её через известные величины.

И вот здесь сейчас начнется веселье.

Нам нужно, чтобы это выражение было наименьшим.

Исследуя функцию , понимаем, что это парабола с ветвями, направленными вверх, то есть точка минимума в вершине, она же единственный экстремум, который находится из уравнения

Вроде бы нашли это значение. Но давайте проверим его)

Но это неудивительно. Вот те самые самые интересные моменты.

Почему вообще так получилось? Есть такая вещь в математике, как комплексные числа. Кратко: нужно решить уравнение , математикам очень захотелось, поэтому уравнение имеет решения, конкретно у этого уравнения их два, это

- мнимая единица, такое число, что

Комплексное число имеет вид: , то есть у него есть мнимая и действительная часть.

Так вот: у любого уравнения, у которого вид , где - многочлен n-ой степени, всегда будет n корней (учитывая их кратность), по следствию из основной теоремы алгебры. Это я к чему. У квадратного уравнения всегда 2 корня. Просто в ситуациях, когда , эти корни комплексные, в ситуации , корень то один, но кратности 2, но вообще считают, что два равных корня.

В целом, у задачки вид ЕГЭшный, поэтому надо бы ограничиться множеством действительных чисел, но если бы подразумевалось, что мы анализируем и множество комплексных чисел, то ответ был бы . Нужно продолжить. Но пока покажу, почему теорема Виета работает исправно в любых случаях.

Дорешаем уравнение при

А ведь это именно то, что мы получим по теореме Виета)))

Как же не влезать в комплексные числа?

Очевидно, что дискриминант у нашего исходного уравнения не должен быть отрицательным, то есть:

Единица находится в другой стороне от нашего полученного множества значений . Получается, что сумма квадратов корней уравнения будет побольше, чем при , и минимальное нецелое это , там будет 2 равных корня. А ближайшее целое значение, удовлетворяющее условию, это .

0,0(0 оценок)
Ответ:
Mihrimah1
Mihrimah1
22.03.2022 21:39
А. Пушкин был человеком широких взглядов, его интересовала жизнь во всех ее проявлениях, и он с удовольствием о ней писал. В своих произведениях писатель размышляет о роли судьбы в жизни человека, высказывает мысль о неизбежности фатума. Автор смело играет судьбами героев, причудливо меняя сюжеты их жизней. Так, в цикле «Повести покойного Ивана Петровича Белкина», А. Пушкин пытается понять, какова роль случая в разных жизненных ситуациях. «Метель» - это несколько страниц рассказа о драматических судьбах русских людей, в чьи жизни ворвались любовь, стихия природы и война.

  
Больше в голову не пришло  извини 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота