1)Все жители не могут быть лгунами, иначе каждый из них сказал бы правду(противоречит условию).
2)Возьмем случайного рыцаря. Из утверждения вытекает, что лжецов на острове больше, чем (2015−1)\2=1007, то есть не менее 1007 лжецов.
3)Возьмем случайного лжеца. Его заявление ложно,т.к. кроме него не более половины жителей острова — лжецы. получается, что кроме него на острове не более 2014\2=1007 лжецов (то есть не более 1007), т.е. вместе с ним лжецов не более 1007.
4)из 2) и 3) следует, что: единственный вариант - это когда на острове ровно 1007 лжецов.
Приравняем к нулю
Произведение равно нулю, если один из множителей равен нулю
Оценим в виде двойного неравенства
Т.е. при - неравенства будут иметь общее решение, значит при неравенства общих решений не будет иметь
Снова оценим в виде двойного неравенства
При неравенства общих решений не имеют
Общее решение:
Проверим будут ли неравенства иметь решения при a=0 и а=3
Если а=0, то неравенство запишется так
Корни будут х=0 и х=2
___-___(0)__-___(2)__+___
x ∈ (2;+∞)
Следовательно общих решений с x ∈ [-1;1] нет, значит а=0 подходит
Если а=3, то
Приравниваем к нулю:
___+___(-√3)___-___(-1)___+____(√3)___-___
x ∈ (-√3;-1) U (√3;+∞)
Общее решение неравенства (3-x²)(x+1)<0 с неравенство x²≤1 нет, следовательно а=3 тоже подходит
ответ:
2)Возьмем случайного рыцаря. Из утверждения вытекает, что лжецов на острове больше, чем (2015−1)\2=1007, то есть не менее 1007 лжецов.
3)Возьмем случайного лжеца. Его заявление ложно,т.к. кроме него не более половины жителей острова — лжецы. получается, что кроме него на острове не более 2014\2=1007 лжецов (то есть не более 1007), т.е. вместе с ним лжецов не более 1007.
4)из 2) и 3) следует, что: единственный вариант - это когда на острове ровно 1007 лжецов.