Y = -x² + 4x + a Функция тогда принимает отрицательные значения, когда y(x) < 0. -x² + 4x + a < 0 x² - 4x - a > 0 x² - 4x + 4 - 4 - a > 0 (x - 2)² > 4 + a Графиком функции y = (x - 2)² является парабола, наименьшее её значение равно 0. Графиком функции y = 4 + a служит прямая, параллельная оси Ox, где a = const. Т.к. наименьшее значение функции y = (x - 2)² равно нулю, а прямая y = 4 + a пересекает параболу в точке (2; 0), причём a = -4, то при a < -4 неравенство (x - 2)² > 4 + a будет верно всегда P.s.: т.к. квадрат числа будет неотрицательным, то неравенство верно при 4 + a < 0, т.е. при a < -4. Наибольшим целым таким a будет являться число 5. ответ: при a = -5.
Функция тогда принимает отрицательные значения, когда y(x) < 0.
-x² + 4x + a < 0
x² - 4x - a > 0
x² - 4x + 4 - 4 - a > 0
(x - 2)² > 4 + a
Графиком функции y = (x - 2)² является парабола, наименьшее её значение равно 0.
Графиком функции y = 4 + a служит прямая, параллельная оси Ox, где a = const.
Т.к. наименьшее значение функции y = (x - 2)² равно нулю, а прямая y = 4 + a пересекает параболу в точке (2; 0), причём a = -4, то при a < -4 неравенство (x - 2)² > 4 + a будет верно всегда
P.s.: т.к. квадрат числа будет неотрицательным, то неравенство верно при 4 + a < 0, т.е. при a < -4.
Наибольшим целым таким a будет являться число 5.
ответ: при a = -5.
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 9). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
9 = √а
(9)² = (√а)²
81 = а
а=81;
b) Если х∈[0; 8], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√8=√8;
При х∈ [0; 8] у∈ [0; √8].
с) y∈ [4; 121]. Найдите значение аргумента.
4 = √х
(4)² = (√х)²
х=16;
121 = √х
(121)² = (√х)²
х=14641;
При х∈ [16; 14641] y∈ [4; 121].