Х²+8х+18=х²+2*4х+4²+2=(х+4)²+2 Квадрат числа - это либо положительное число, либо ноль. То есть (х+4)²≥0. Если к положительному числу или нулю добавить 2, то получится положительное число. Значит, выражение принимает положительное значение при любом значении х. Наименьшее значение выражение примет в том случае, если значение выражения (х+4)² будет наименьшим, то есть 0, поскольку квадрат числа не может быть отрицательным. При этом значение выражения будет равно 0+2=2. Итак, найдем х, при котором выражение принимает наименьшее значение: (х+4)²=0 х+4=0 х=0-4 х=-4 - при таком значении х значение будет наименьшим. ответ: наименьшее значение выражения будет 2 при х=-4.
Квадрат числа - это либо положительное число, либо ноль. То есть (х+4)²≥0. Если к положительному числу или нулю добавить 2, то получится положительное число. Значит, выражение принимает положительное значение при любом значении х.
Наименьшее значение выражение примет в том случае, если значение выражения (х+4)² будет наименьшим, то есть 0, поскольку квадрат числа не может быть отрицательным. При этом значение выражения будет равно 0+2=2.
Итак, найдем х, при котором выражение принимает наименьшее значение:
(х+4)²=0
х+4=0
х=0-4
х=-4 - при таком значении х значение будет наименьшим.
ответ: наименьшее значение выражения будет 2 при х=-4.
Знайти координати вектора AB, якщо A(1; 4), B(3; 1).
Розв'язок: AB = {3 - 1; 1 - 4} = {2; -3}.
Приклад 2. Знайти координати точки B вектора AB = {5; 1}, якщо координати точки A(3; -4).
Розв'язок:
ABx = Bx - Ax => Bx = ABx + Ax => Bx = 5 + 3 = 8
ABy = By - Ay => By = ABy + Ay => By = 1 + (-4) = -3
Відповідь: B(8; -3).
Приклад 3. Знайти координати точки A вектора AB = {5; 1}, якщо координати точки B(3; -4).
Розв'язок:
ABx = Bx - Ax => Ax = Bx - ABx => Ax = 3 - 5 = -2
ABy = By - Ay => Ay = By - ABy => Ay = -4 - 1 = -5
Відповідь: A(-2; -5).