Пусть скорость пассажирского поезда=х, тогда скорость товарного поезда=х–20. Пассажирский поезд ехал 4 часа и за это время он проехал расстояние 4х, а товарный поезд за 6 часов проехал расстояние 6(х–20), и так как расстояние они проехали одинаковое составим уравнение:
6(х–20)=4х
6х–120=4х
6х–4х=120
2х=120
х=120÷2=60
Итак: скорость пассажирского поезда=60 км/ч, тогда скорость товарного поезда=60–20=40 км/ч
1)Чтобы уравнение имело 2 различных корня, дискриминант должен быть больше 0. ТОгда a=3; b=-2p; c=6-p. D=b^2-4ac=(-2p)^2 -4*3*(6-p)=4p^2-72+12p=4p^2+12p-72>0; p^2+3p-18>0;С метода интервалов получим(p-3)*(p+6)>0; p< - 6 U p > 3. p∈(-·бесконечность; - 6) U (3; +бесконечность). 2) Чтобы уравнение имело только один корень, дискриминант должен равняться нулю. Д=0 при р= -6 и при р =3. 3)Чтобы уравнение не имело корней, дискриминант должен быть меньше нуля. p^2+3p-18 <0; -6 < p < 3. p∈ ( -6; 3) 4) Хотя бы один корень, значит, или один или два корня, Поэтому объединим решения 1-го и 2-го случаев и получим ответ.x∈(-бесконечность ; -6] U [ 3 ; + бесконечность)
Объяснение:
№1
а) (3а–4ах+2)–(11а–14ах)=3а–4ах+2–11а+14ах=
=3а–11а–4ах+14ах+2= –8а+10ах+2
б) 3у²(у³+1)=3у⁵+3у²
№2
а) 10аb–15b²=5b(2a–3b)
б) 18а³+6а²=6а²(3а+1)
№3
9х–6(х–1)=5(х+2)
9х–6х+6=5х+10
3х–5х=10–6
–2х=4
х=4÷(–2)
х= –2
№4
Пусть скорость пассажирского поезда=х, тогда скорость товарного поезда=х–20. Пассажирский поезд ехал 4 часа и за это время он проехал расстояние 4х, а товарный поезд за 6 часов проехал расстояние 6(х–20), и так как расстояние они проехали одинаковое составим уравнение:
6(х–20)=4х
6х–120=4х
6х–4х=120
2х=120
х=120÷2=60
Итак: скорость пассажирского поезда=60 км/ч, тогда скорость товарного поезда=60–20=40 км/ч
ОТВЕТ: скорость пассажирского поезда 60 км/ч
ТОгда a=3; b=-2p; c=6-p.
D=b^2-4ac=(-2p)^2 -4*3*(6-p)=4p^2-72+12p=4p^2+12p-72>0;
p^2+3p-18>0;С метода интервалов получим(p-3)*(p+6)>0;
p< - 6 U p > 3. p∈(-·бесконечность; - 6) U (3; +бесконечность).
2) Чтобы уравнение имело только один корень, дискриминант должен равняться нулю.
Д=0 при р= -6 и при р =3.
3)Чтобы уравнение не имело корней, дискриминант должен быть меньше нуля.
p^2+3p-18 <0;
-6 < p < 3. p∈ ( -6; 3)
4) Хотя бы один корень, значит, или один или два корня, Поэтому объединим решения 1-го и 2-го случаев и получим ответ.x∈(-бесконечность ; -6] U [ 3 ; + бесконечность)