Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
Мойурок
27.11.2020 09:13 •
Алгебра
Дробь
a3 m
__ * __ =
x A
. ( c )
2)(-4x) * ( - ___)
. ( y )
2
3)Поднести до степеня ( a3 )
( - )
( 3b )
Даю все 60 которые есть
Показать ответ
Ответ:
чсссвввввавшвневаа
04.04.2023 12:23
Решение
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
0,0
(0 оценок)
Ответ:
73487Юлия14271
14.10.2020 11:39
Решение
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
0,0
(0 оценок)
Популярные вопросы: Алгебра
Ildar298
07.08.2022 00:37
)1.в одной системе координат постройте графики функций y=-0.5x+2 , y= -0.5x и y=2 2.найдите координаты точки пересечения графиков функций y=-x+2 и y=1.5x-2 3.задайте формулой прямую...
arpine1977
07.08.2022 00:37
Преобразуйте в многочлен стандартного вида выражение (35a^3b-28a^4): 7a^3...
ofdgf
07.08.2022 00:37
Известно, что 4,7 √23 4,8. оцените: a) 3√23; б) -2√23...
bitmobru
07.08.2022 00:37
Из числового промежутка (-1; 4) выделите подмножество значений х, при которых двучлен 0,2 + 0,3х принимает большее значение, чем двучлен 1,2 - 0,1х....
Кристина1081567
07.08.2022 00:37
Разложить на множители 128*а(в 7 степени)+в(в 7 степени)...
grasdas
07.08.2022 00:37
Выражение 16-40x+25x^2 и найдите его значение при x=0,4...
arseniy2607
07.08.2022 00:37
Решите ! 4(cos^2 (x/3) + sin (x/3))=1...
dimasikPro2
07.08.2022 00:37
Сравните числа a и b если а) а = 2+_/11 ; b = _/5 + _/10 б)a=_/7 + _/5 ; b = 3 + _/3 _/ - квадратный корень...
Лебеде
06.11.2022 04:27
Нужно решить неравенство: 18-2x^2 =|x^2+3x|...
VaryaStar55
06.11.2022 04:27
Какую звёздачку в вырожении 2*0*1*5*2*0*1*=0 нужно заменить знакум +или-так чтобы равенство стало верным. какое наименьшее число плюсов прийдётся поставить ?...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z
1) 2cosx-1 < 0
cosx < 1/2
arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z
π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z
2) sin2x - √2/2 < 0
sin2x < √2/2
- π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z
- π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z
- 5π/8 + πk < x < π/8 + πk, k ∈ Z
3) tgx<1
- π/2 + πn < x < arctg(1) + πn, n ∈ Z
- π/2 + πn < x < π/4 + πn, n ∈ Z