sinα=1/4,
cosa = √ 1-sin^2a = √ 1-1/16=√15 /4
sinβ=5/13
cosβ= √ 1-sin^2β = √ 1-25/169=12 /13
а) cos2α = 1-2sin^2a=1-2*(1/4)^2 =7/8
б)sin2β = 2sinβcosβ=2 *5/13 *12 /13=120 /169
в)sin(α+β) =sinacosβ +sinβcosa=1/4*12 /13 +5/13*√15 /4 =3.13+5√15)/52
sinα=1/4,
cosa = √ 1-sin^2a = √ 1-1/16=√15 /4
sinβ=5/13
cosβ= √ 1-sin^2β = √ 1-25/169=12 /13
а) cos2α = 1-2sin^2a=1-2*(1/4)^2 =7/8
б)sin2β = 2sinβcosβ=2 *5/13 *12 /13=120 /169
в)sin(α+β) =sinacosβ +sinβcosa=1/4*12 /13 +5/13*√15 /4 =3.13+5√15)/52