Два корабля встретились в море. Один на востоке, а другой на севере
плавал. Скорость первого на 10 км / ч быстрее второго. Два через 2 часа
Расстояние между кораблями составляло 100 км. Найдите скорость каждого корабля.
а) 50 км / ч и 40 км / ч
б) 30 км / ч и 40 км / ч
в) 40 км / ч и 20 км / ч
г) 60 км / ч и 50 км / ч
36 = (V+2)*t,
35 = V * (t+1/20)
Раскрываем скобки:
36 = Vt+2t
35=Vt+V/20
Вычитаем из второго уравнения первое:
1 = V/20 - 2t
Выражаем скорость:
V/20 = 1 + 2t
V = 20 + 40 t
Подставим это соотношение, например, в первое уравнение:
36=(20+40t+2)t
36 = 40 t^2 + 22 t
40 t^2 + 22 t - 36 = 0
Сокращаем:
20 t ^2 + 11 t - 18 = 0
Решаем квадратное уравнение:
D = 11*11 + 4 *20*18 = 121 + 1440 = 1561 = 39,5 (округлённо)
t = (-11+-(39,5)) / 40 = {-1,25; 0,7}
Время отрицательным быть не может, единственный подходящий результат - 0,7 ч. Подставляем в полученное выражение скорости:
V = 20 + 40 t = 20 + 40 * 0,7 = 48 км/ч.
Хотя явно не очень сходится, даже со всеми округлениями. Возможно, в вычислениях ошибся, но ход решения примерно такой.
Построение графиков функций
Сервис поддерживает возможность построения графиков функций как вида , так и вида . Для того, чтобы построить график функции  на отрезке  нужно написать в строке: f[x],{x, a, b}. Если Вы хотите, чтобы диапазон изменения ординаты  был конкретным, например , нужно ввести: f[x],{x, a, b},{y, c, d}.
Примеры
x^2+x+2, {x,-1,1};
x^2+x+2, {x,-1,1},{y,-1,5};
Sin[x]^x, {x,-Pi,E};
Sin[x]^x, {x,-Pi,E},{y,0,1}.
Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:f[x]&&g[x]&&h[x]&&…&&t[x],{x, a, b}.
Примеры
x&&x^2&&x^3, {x,-1,1},{y,-1,1};
Sin[x]&&Sin[5x]&&Sin[10x]&&Sin[15x], {x,-5,5}.
Для того, чтобы построить график функции  на прямоугольнике , нужно написать в строке: f[x, y],{x, a, b},{y, c, d}. К сожалению, диапазон изменения аппликаты  пока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции  Вы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).
Примеры
Sin[x^2+y^2],{x,-1,-0.5},{y,-2,2};
xy,{x,-4,4},{y,-4,4}.