Два робітники працюючи разом можуть виконати завдання за 4 години 48 хв за скільки годин може виконати завдання кожен робітник, працюючи самостійно, якщо один з них може це зробити на 4 год швидше, ніж інший?
Когда число возводится в степень с натуральным показателем, то имеется в виду, что оно умножается само на себя столько раз, каков показатель степени:
43 = 4 × 4 × 4; 26 = 2 × 2 × 2 × 2 × 2 × 2
Когда же показатель степени равен 1, то при возведении имеется всего лишь один множитель (если тут вообще можно говорить о множителях), и поэтому результат возведения равен основанию степени:
181 = 18; (–3.4)1 = –3.4
Но как в таком случае быть с нулевым показателем? Что на что умножается?
Попробуем пойти иным путем. Известно, что если у двух степеней одинаковые основания, но разные показатели, то основание можно оставить тем же самым, а показатели либо сложить друг с другом (если степени перемножаются), либо вычесть показатель делителя из показателя делимого (если степени делятся):
32 × 31 = 32+1 = 33 = 3 × 3 × 3 = 27
45 ÷ 43 = 45–3 = 42 = 4 × 4 = 16
А теперь рассмотрим такой пример:
82 ÷ 82 = 82–2 = 80 = ?
Что если мы не будем пользоваться свойством степеней с одинаковым основанием и произведем вычисления по порядку их следования:
82 ÷ 82 = 64 ÷ 64 = 1
Вот мы и получили заветную единицу. Таким образом нулевой показатель степени как бы говорит о том, что число не умножается само на себя, а делится само на себя.
И отсюда становится понятно, почему выражение 00 не имеет смысла. Ведь нельзя делить на 0.
Можно рассуждать по-другому. Если имеется, например, умножение степеней 52 × 50 = 52+0 = 52, то отсюда следует, что 52 было умножено на 1. Следовательно, 50 = 1.
Когда число возводится в степень с натуральным показателем, то имеется в виду, что оно умножается само на себя столько раз, каков показатель степени:
43 = 4 × 4 × 4; 26 = 2 × 2 × 2 × 2 × 2 × 2
Когда же показатель степени равен 1, то при возведении имеется всего лишь один множитель (если тут вообще можно говорить о множителях), и поэтому результат возведения равен основанию степени:
181 = 18; (–3.4)1 = –3.4
Но как в таком случае быть с нулевым показателем? Что на что умножается?
Попробуем пойти иным путем. Известно, что если у двух степеней одинаковые основания, но разные показатели, то основание можно оставить тем же самым, а показатели либо сложить друг с другом (если степени перемножаются), либо вычесть показатель делителя из показателя делимого (если степени делятся):
32 × 31 = 32+1 = 33 = 3 × 3 × 3 = 27
45 ÷ 43 = 45–3 = 42 = 4 × 4 = 16
А теперь рассмотрим такой пример:
82 ÷ 82 = 82–2 = 80 = ?
Что если мы не будем пользоваться свойством степеней с одинаковым основанием и произведем вычисления по порядку их следования:
82 ÷ 82 = 64 ÷ 64 = 1
Вот мы и получили заветную единицу. Таким образом нулевой показатель степени как бы говорит о том, что число не умножается само на себя, а делится само на себя.
И отсюда становится понятно, почему выражение 00 не имеет смысла. Ведь нельзя делить на 0.
Можно рассуждать по-другому. Если имеется, например, умножение степеней 52 × 50 = 52+0 = 52, то отсюда следует, что 52 было умножено на 1. Следовательно, 50 = 1.
Объяснение:
Это правило
Відповідь:
1)(b-6)/(b-3)-b/(3-b)=2
2)(6с+4)/(7-с)+(3с+25)/(с-7)=-3
3)(3а+1)^2/(24a-24)+(a+3)^2/(24-24a)=(a+1)/3
4)(36-8x)/(x-6)^2-(4x-x^2)/(6-x)^2=1
Пояснення:
1)(b-6)/(b-3)-b/(3-b)=(b-6)/(b-3)+b/(b-3)=(2b-6)/(b-3)=2(b-3)/(b-3)=2
2)(6с+4)/(7-с)+(3с+25)/(с-7)=(3с+25)/(с-7)-(6с+4)/(с-7)=(3с+25-6с-4)/(с-7)=(-3с+21)/(с-7)=
(-3(с-7))/(с-7)=-3
3)(3а+1)^2/(24a-24)+(a+3)^2/(24-24a)=(9a^2+6a+1)/(24a-24)-(a^2+6a+9)/(24a-24)
=(9a^2+6a+1-a^2-6a-9)/(24a-24)=(8a^2-8)/(24(a-1))=(a^2-1)/(3(a-1))=(a-1)(a+1)/(3(a-1))
=(a+1)/3
4)(36-8x)/(x-6)^2-(4x-x^2)/(6-x)^2=(36-8x)/(x-6)^2-(4x-x^2)/(x-6)^2=(36-8x-4x+x^2)/(x-6)^2=
(x^2-12x+36)/(x-6)^2=(x-6)^2/(x-6)^2=1