Две трубы наполняют бассейн за 3 часа. Определите за сколько часов наполняет бассейн 2я труба, если 1я труба наполняет бассейн за 4 часа 30 минут?. По условию задачи две трубы наполняют бассейн за 3 часа. Значит совместная производительность равна ___ часть бассейна за 1 час. А первая труба наполняет бассейн за ___ час, тогда её производительность равна ___ часть бассейна за 1 час. Найдем производительность второй трубы: _ - _ = _ часть бассейна. Значит она наполнит бассейн за _ часов
Там где нижнее подчеркивание, нужно вставить ответ
а) прямые идентичны - совпадают они не могут быть параллельны;
б)к1=-3 к2=2 то есть к1 не равно к2 таким образом прямые пересекаются, найдем точку пересечения
-3х+4=2х-1
-5х=-1-4
х=1 ттогда у=-3*(1)+4=1 то есть прямые пересекаются в точке (1;1)
в)опять же прямые совпадают
г)-5 не равно 1 то есть прямые пересекаются, ищем точку
-5х+3=х-3
-6х=-6
х=1 тогда у=-5*1+3=-2 то есть пересекаются в точке (1;-2)
д)1=1 то есть прямые параллельны, не пересекаются
е)тоже параллельны так как 1,5=1,5
ж) прямые параллельны
з) прямые пересекаюстя так как 79 не равно 75
и пересекаются они в точке:
79х=75х
х=0 тогда у=79*0=0 (0;0)
Для того, чтобы найти решение уравнения -15 = 3t(2 - t) мы начнем с того, что выполним открытие скобок в правой части уравнения.
Итак, откроем скобки и получим:
-15 = 3t * 2 - 3t * t;
-15 = 6t - 3t2;
3t2 - 6t - 15 = 0;
Разделим на 3 обе части уравнения и получим:
t2 - 2t - 5 = 0;
Вычислим прежде всего дискриминант уравнения:
D = b2 - 4ac = (-2)2 - 4 * 1 * (-5) = 4 + 20 = 24;
Вычислим корни уравнения следующим образом:
x1 = (-b + √D)/2a = (2 + √24)/2 * 1 = (2 + 2√6)/2 = 1 + √6;
x2 = (-b - √D)/2a = (2 - √24)/2 * 1 = (2 - 2√6)/2 = 1 - √6.