Егер екі таңбалы санға оның цифрларының екі еселенген қосындысын қосса , 96 шығады . Егер сол санды цифрларының қосындысына көбейтсе , онда 952 шығады . Екі таңбалы санды табыңдар .
Обозначим углы треугольника следующим образом: а - наименьший, b - средний по величине, c - наибольший. Находим сумму наименьшего с наибольшим: а+с Так как сумма углов треугольника равна 180°, то b=180°-(a+c) Анализируем предложенные ответы: А) если (а+с)=61°, то b=180°-61°=119° - тупой угол, следовательно наибольший угол - противоречие условию "b - средний по величине угол" Б) если (а+с)=90°, то b=180°-90°=90° - прямой угол, следовательно наибольший угол - также противоречие условию "b - средний по величине угол" В) если (а+с)=91°, то b=180°-91°=89° - в качестве примера отлично подходят углы а=1°, с=90° - полное соответствие условию: а - наименьший, b - средний, с - наибольший угол. Дальнейшая проверка ответов не имеет смысла, так как необходимо было найти самый маленький результат. ответ: 91°
а - наименьший, b - средний по величине, c - наибольший.
Находим сумму наименьшего с наибольшим: а+с
Так как сумма углов треугольника равна 180°, то b=180°-(a+c)
Анализируем предложенные ответы:
А) если (а+с)=61°, то b=180°-61°=119° - тупой угол, следовательно наибольший угол - противоречие условию "b - средний по величине угол"
Б) если (а+с)=90°, то b=180°-90°=90° - прямой угол, следовательно наибольший угол - также противоречие условию "b - средний по величине угол"
В) если (а+с)=91°, то b=180°-91°=89° - в качестве примера отлично подходят углы а=1°, с=90° - полное соответствие условию: а - наименьший, b - средний, с - наибольший угол.
Дальнейшая проверка ответов не имеет смысла, так как необходимо было найти самый маленький результат.
ответ: 91°
2sin²x(sinx+cosx)-cos²x(sinx+cosx)=0
(sinx+cosx)(2sin²x-cos²x)=0
1) sinx+cosx=0
sinx + cosx = 0
cosx cosx cosx
tgx +1=0
tgx= -1
x= -π/4 +πk, k∈Z
1) 2sin²x-cos²x=0
2(1-cos²x)-cos²x=0
2-2cos²x-cos²x=0
2-3cos²x=0
-3cos²x= -2
cos²x=2/3
a) cosx=√(2/3)
x=+ arccos √(2/3) + 2πk, k∈Z
б) cosx= -√(2/3)
x=+ (π - arccos √(2/3))+2πk, k∈Z
ответ: -π/4 + πk, k∈Z;
+ arccos √(2/3) +2πk, k∈Z;
+ (π - arccos√(2/3))+2πk, k∈Z.
2. (2sin³x-sin²x cosx)+(2sinx cos²x-cos³x)=0
sin²x(2sinx-cosx)+cos²x(2sinx-cosx)=0
(2sinx-cosx)(sin²x+cos²x)=0
(2sinx-cosx) * 1=0
2sinx-cosx=0
2sinx - cosx= 0
cosx cosx cosx
2tgx -1 =0
2tgx=1
tgx=1/2
x= arctg 1/2 + πk, k∈Z
ответ: arctg 1/2 +πk, k∈Z.