Объяснение: Для решения интеграла используем метод неопределённых коэффициентов, для этого разложим знаменатель подинтегральной функции на множители: х²-6х+8=0 ⇒ D=36-32=4 ⇒ х₁=4, х₂=2. Тогда х²-6х+8= (х-4)(х-2)
Получаем разложение знаменателя на множители в подынтегральном выражении: (2х+1)/(х²-6х+8)=(2х+1)/(х-4)(х-2)= А/(х-4) + В/(х-2)= (А(х-2)+В(х-4))/(х-2)(х-4)=(Ах-2А+Вх-4В)/(х-2)(х-4)= ((А+В)х+(-2А - 4В))/(х-2)(х-4) В обеих частях равенства отыскиваем слагаемые с одинаковыми степенями икса и составляем из них систему уравнений: А+В=2 и-2А-4В=1, откуда А=4,5 ; В= -2,5. Значит мы получили следуещее разложение подинтегральной функции:
ответ: a₁₁=15
Объяснение:
Дано:
а₁+а₃+...+а₂₁ = а₂+а₄+...+а₂₀+15
Найти а₁₁
Решение
1) Всего в арифметической прогрессии 21 член.
Теперь каждый из них выразим через первый член а₁ и знаменатель прогрессии d.
а₂=a₁+d
а₃=a₁+2d
а₄=a₁+3d
а₆=a₁+5d
а₁₁=a₁+10d
a₂₀=a₁+19d
а₂₁=a₁+20d
2) Левая часть данного равенства представлена суммой 11-ти нечетных членов прогрессии. Найдем её.
а₁+а₃+...+а₂₁ = а₁+(a₁+2d)+...+(а₁+20d) =(a₁+a₁+20d)*11/2 = 11*(a₁+10d)
3) Правая часть данного равенства представлена суммой 10-ти четных членов прогрессии и числа 15. Найдем её.
а₂+а₄+...+а₂₀+15 = (a₁+d+a₁+19d)*10/2 + 15 = 10*(a₁+10d)+15
4) Теперь данное равенство имеет вид:
11*(a₁+10d) = 10*(a₁+10d)+15
Проведем преобразования, приведем подобные члены и получим:
11a₁+110d = 10a₁+100d+15
(11a₁ - 10a₁) + (110d - 100d) = 15
a₁+ 10d = 15
a₁₁=15
ответ:4,5ln|x-4| -2,5 ln|x-2|+C
Объяснение: Для решения интеграла используем метод неопределённых коэффициентов, для этого разложим знаменатель подинтегральной функции на множители: х²-6х+8=0 ⇒ D=36-32=4 ⇒ х₁=4, х₂=2. Тогда х²-6х+8= (х-4)(х-2)
Получаем разложение знаменателя на множители в подынтегральном выражении: (2х+1)/(х²-6х+8)=(2х+1)/(х-4)(х-2)= А/(х-4) + В/(х-2)= (А(х-2)+В(х-4))/(х-2)(х-4)=(Ах-2А+Вх-4В)/(х-2)(х-4)= ((А+В)х+(-2А - 4В))/(х-2)(х-4) В обеих частях равенства отыскиваем слагаемые с одинаковыми степенями икса и составляем из них систему уравнений: А+В=2 и-2А-4В=1, откуда А=4,5 ; В= -2,5. Значит мы получили следуещее разложение подинтегральной функции:
∫(2х+1)dx/(х²-6х+8)=∫(2х+1)dx/(х-4)(х-2)= ∫4,5dx/(x-4) -∫2,5dx/(x-2)= 4,5ln|x-4| -2,5 ln|x-2|+C