1) Задумал х, умножил на 2, получил 2х, вычел 15, получил 2x - 15, разделил результат на 10 и получил 0. (2x - 15)/10 = 0 2x - 15 = 0 2x = 15 x = 15/2 = 7,5
2) Задумал х, прибавил 7, получил x + 7, умножил это на 3, получил 3(x + 7), Вычел 15 и получил 30. 3(x + 7) - 15 = 30 3(x + 7) = 30 + 15 = 45 x = 45/3 - 7 = 15 - 7 = 8
3) В 1 день км, во 2 день x + 10 км, а всего 48 км. x + x + 10 = 48 2x = 48 - 10 = 38 x = 38/2 = 19; x + 10 = 29
4) Положили x яблок и 5x слив, а всего 18 фруктов. x + 5x = 18 6x = 18 x = 3 - яблок; 5x = 15 - слив
5) В банке x л воды, в ведре 3x л. x + 3x = 24 4x = 24 x = 6 л - в банке; 3x = 18 л - в ведре.
6) Андрею x лет, а Олегу в 3 раза больше или на 8 лет больше 3x = x + 8 2x = 8 x = 4 - Андрею, 3x = 12 - Олегу.
7) Из банки отлили 1/2 молока, потом половину остатка, то есть 1/4. А потом еще половину остатка, то есть 1/8. Всего отлили 1/2 + 1/4 + 1/8 = 4/8 + 2/8 + 1/8 = 7/8 банки. Осталось 1/8 банки и это 100 г. Значит, в банке было 100*8 = 800 г.
8) Скорость автобуса х км/ч, а автомобиля х+12 км/ч. Некое расстояние автобус проехал за 4 часа, а машина за 3 часа. 4x = 3(x + 12) 4x = 3x + 36 x = 36 км/ч - скорость автобуса. x + 12 = 36 + 12 = 48 км/ч - скорость автомобиля. За 4 часа он проехал 36*4 = 144 км.
9) За 1 час ученик отошел от школы на 3 км, и в это время выехал вел. За время t ученик успеет пройти 3t км, а вел проедет 16t км. И это на 3 км больше, чем пройдет ученик. S = 3t + 3 = 16t 13t = 3 t = 3/13 часа = 180/13 мин ~ 13,85 мин. Расстояние от школы, которое успеет проехать велосипедист S = 16t = 16*3/13 = 48/13 км ~ 3,7 км.
Находим производную функции, как производную суммы: ( u + v )' = u' + v' . И приравниваем его к нулю, так как в экстремумах производная равна нулю.
у' = ( х³ - 2х² + х - 2 )' = ( х³ )' - ( 2х² )' + ( х )' - ( 2 )' = 3х² - 4х + 1у' = 0 ⇒ 3х² - 4х + 1 = 0D = (-4)² - 4•3•1 = 16 - 12 = 4 = 2²x₁ = ( 4 - 2 )/6 = 2/6 = 1/3x₂ = ( 4 + 2 )/6 = 6/6 = 1y' [ 1/3 ][ 1 ]> xy __↑__[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка минимума ⇒ х = 1ОТВЕТ: 12) Найдите точку максимума функции у = 9 - 4х + 4х² - х³у' = - 4 + 8х - 3х² ; у' = 0- 4 + 8x - 3х² = 03x² - 8x + 4 = 0D = (-8)² - 4•3•4 = 64 - 48 = 16 = 4²x₁ = ( 8 - 4 )/6 = 4/6 = 2/3x₂ = ( 8 + 4 )/6 = 12/6 = 2y' [ 2/3 ][ 2 ]> xy __↓__[ x (min) ]__↑__[ x (max) ]__↓__> xЗначит, точка максимума ⇒ х = 2ОТВЕТ: 23) Найдите точку минимума функции у = х³ - 3,5х² + 2х - 3у' = 3х² - 7х + 2 ; у' = 0 ⇒3х²- 7х + 2 = 0D = (-7)² - 4•3•2 = 49 - 24 = 25 = 5²x₁ = ( 7 - 5 )/6 = 2/6 = 1/3x₂ = ( 7 + 5 )/6 = 12/6 = 2y' [ 1/3 ][ 2 ]> xy __↑__[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка минимума ⇒ х = 2ОТВЕТ: 24) Найдите точку максимума функции у = х³ + х² - 8х - 7у' = 3х² + 2х - 8 ; у' = 0 ⇒3х² + 2х - 8 = 0D = 2² - 4•3•(-8) = 4 + 96 = 100 = 10²x₁ = ( - 2 - 10 )/6 = - 12/6 = - 2x₂ = ( - 2 + 10 )/6 = 8/6 = 4/3y' [ - 2 ][ 4/3 ]> xy ___↑___[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка максимума ⇒ х = - 2ОТВЕТ: - 25) Найдите точку минимума функции у = х³ - 4х² - 3х - 12у' = 3х² - 8х - 3 ; у' = 0 ⇒3х² - 8х - 3 = 0D = (-8)²- 4•3•(-3) = 64 + 36 = 100 = 10²x₁ = ( 8 - 10 )/6 = - 2/6 = - 1/3x₂ = ( 8 + 10 )/6 = 18/6 = 3y' [ - 1/3 ][ 3 ]> xy ___↑__[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка минимума ⇒ х = 3ОТВЕТ: 36) Найдите точку максимума функции у = х³ + 8х² + 16х + 3у' = 3х² + 16х + 16 ; у' = 0 ⇒3х² + 16х + 16 = 0D = 16² - 4•3•16 = 16•( 16 - 12 ) = 16•4 = 4²•2² = 8²x₁ = ( - 16 - 8 )/6 = - 24/6 = - 4x₂ = ( - 16 + 8 )/6 = - 8/6 = - 4/3y' [ - 4 ][ - 4/3 ]> xy __↑__[ x (max) ]__↓__[ x (min) ]__↑___> xЗначит, точка максимума ⇒ х = - 4ОТВЕТ: - 47) Найдите точку минимума функции у = х³ + х² - 16х + 5у' = 3х² + 2х - 16 ; у' = 0 ⇒3х² + 2х - 16 = 0D = 2² - 4•3•(-16) = 4•( 1 + 48 ) = 4•49 = 2²•7² = 14²x₁ = ( - 2 - 14 )/6 = - 16/6 = - 8/3x₂ = ( - 2 + 14 )/6 = 12/6 = 2y' [ - 8/3 ][ 2 ]> xy __↑__[ x (max) ]__↓__[ x (min) ]__↑___> xЗначит, точка минимума ⇒ х = 2ОТВЕТ: 28) Найдите точку максимума функции у = х³ + 4х² + 4х + 4у' = 3х² + 8х + 4 ; у' = 0 ⇒3х² + 8х + 4 = 0D = 8² - 4•3•4 = 64 - 48 = 16 = 4²x₁ = ( - 8 - 4 )/6 = - 12/6 = - 2x₂ = ( - 8 + 4 )/6 = - 4/6 = - 2/3y' [ - 2 ][ - 2/3 ]> xy __↑__[ x (max) ]__↓__[ x (min) ]__↑___> xЗначит, точка максимума ⇒ х = - 2ОТВЕТ: - 29) Найдите точку минимума функции у = х³ - 4х² - 8х + 8у' = 3х² - 8х - 8 ; у' = 0 ⇒3х² - 8х - 8 = 0D = (-8)² - 4•3•(-8) = 64 + 96 = 160 = (4√10)²x₁ = ( 8 - 4√10 )/6 = (4 - 2√10)/3x₂ = ( 8 + 4√10 )/6 = (4 + 2√10)/3y' [ (4-2√10)/3 ][ (4+2√10)/3 ]> xy ___↑__[ x (max) ]↓[ x (min) ]↑___> xЗначит, точка минимума ⇒ х = (4+2√10)/3ОТВЕТ: (4+2√10)/310) Найдите точку максимума функции у = х³ + 5х² + 3х + 2 у' = 3х² + 10х + 3 ; у' = 0 ⇒3х² + 10х + 3 = 0D = 10² - 4•3•3 = 100 - 36 = 64 = 8²x₁ = ( - 10 - 8 )/6 = - 18/6 = - 3x₂ = ( - 10 + 8 )/6 = - 2/6 = - 1/3y' [ - 3 ][ - 1/3 ]> xy __↑__[ x (max) ]__↓__[ x (min) ]__↓__> xЗначит, точка максимума ⇒ х = - 3ОТВЕТ: - 3(2x - 15)/10 = 0
2x - 15 = 0
2x = 15
x = 15/2 = 7,5
2) Задумал х, прибавил 7, получил x + 7, умножил это на 3, получил 3(x + 7),
Вычел 15 и получил 30.
3(x + 7) - 15 = 30
3(x + 7) = 30 + 15 = 45
x = 45/3 - 7 = 15 - 7 = 8
3) В 1 день км, во 2 день x + 10 км, а всего 48 км.
x + x + 10 = 48
2x = 48 - 10 = 38
x = 38/2 = 19; x + 10 = 29
4) Положили x яблок и 5x слив, а всего 18 фруктов.
x + 5x = 18
6x = 18
x = 3 - яблок; 5x = 15 - слив
5) В банке x л воды, в ведре 3x л.
x + 3x = 24
4x = 24
x = 6 л - в банке; 3x = 18 л - в ведре.
6) Андрею x лет, а Олегу в 3 раза больше или на 8 лет больше
3x = x + 8
2x = 8
x = 4 - Андрею, 3x = 12 - Олегу.
7) Из банки отлили 1/2 молока, потом половину остатка, то есть 1/4.
А потом еще половину остатка, то есть 1/8. Всего отлили
1/2 + 1/4 + 1/8 = 4/8 + 2/8 + 1/8 = 7/8 банки.
Осталось 1/8 банки и это 100 г. Значит, в банке было 100*8 = 800 г.
8) Скорость автобуса х км/ч, а автомобиля х+12 км/ч.
Некое расстояние автобус проехал за 4 часа, а машина за 3 часа.
4x = 3(x + 12)
4x = 3x + 36
x = 36 км/ч - скорость автобуса.
x + 12 = 36 + 12 = 48 км/ч - скорость автомобиля.
За 4 часа он проехал 36*4 = 144 км.
9) За 1 час ученик отошел от школы на 3 км, и в это время выехал вел.
За время t ученик успеет пройти 3t км, а вел проедет 16t км.
И это на 3 км больше, чем пройдет ученик.
S = 3t + 3 = 16t
13t = 3
t = 3/13 часа = 180/13 мин ~ 13,85 мин.
Расстояние от школы, которое успеет проехать велосипедист
S = 16t = 16*3/13 = 48/13 км ~ 3,7 км.