Наши действия: 1) ищем производную 2) приравниваем её к нулю и решаем уравнение 3) выясняем, какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах промежутка. 4) из всех результатов ищем наибольший( наименьший) и пишем ответ. поехали? 1)f'(x) = 3x^2 -12 2)3x^2 -12 = 0 3x^2 = 12 x^2 = 4 x = +-2 3) из этих чисел в указанный промежуток [0;3] попал х = 2 f(2) = 2^3 -12*2 +7 = 8 -24 +7 = 15 -24 = -9 f(0) = 0^3 -12*0 +7 = 7 f(3) = 3^3 -12*3 +7= 27 -36 +7 = 34 - 36 = -2 4) ответ: max f(x) = f(0) = 7 minf(x) = f(2) = -9
заметим, что
I t I² =t², ⇒ (4*x-7)^2= Ι (4*x-7) Ι² ⇒ пусть Ι (4*x-7) Ι=y ⇔
y²=y ⇔y(y-1)=0 ⇔ 1) y=0 2) y-1=0 ⇒ y=1 ⇒ Ι (4*x-7) Ι=1
1) y=0 ⇒ Ι (4*x-7) Ι=0 ⇒4*x-7=0 ⇒x=7/4
проверка x=7/4
(4*x-7)^2 = Ι (4*x-7) Ι (4*(7/4)-7)^2 = Ι (4*(7/4)-7) Ι 0=0 верно
2) Ι (4*x-7) Ι=1 ⇔
2.1) 4*x-7=1 ⇔ x=2
проверка x=2 (4*2-7)^2 = Ι (4*2-7) Ι 1=1 верно
2.2) 4*x-7=-1 ⇔ x=6/4 x=3/2
проверка x=3/2 (4*(3/2)-7)^2 = Ι (4*(3/2)-7) Ι 1=1 верно
ответ: x=7/4, x=2, x=3/2 .
2.
Ι (3x^2-3x-5) Ι=10 ⇔
1) (3x^2-3x-5) =10 2) (3x^2-3x-5) =-10
1) (3x^2-3x-15) =0 D=9+4·3·15=9(1+20)>0
x1=(3-3√21)/6 =(1-√21)/2 x2=(1+√21)/2
2) (3x^2-3x+5) =0 D=9-4·3·5=<0 нет решений
ответ:
x1=(1-√21)/2 x2=(1+√21)/2
2) приравниваем её к нулю и решаем уравнение
3) выясняем, какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах промежутка.
4) из всех результатов ищем наибольший( наименьший) и пишем ответ.
поехали?
1)f'(x) = 3x^2 -12
2)3x^2 -12 = 0
3x^2 = 12
x^2 = 4
x = +-2
3) из этих чисел в указанный промежуток [0;3] попал х = 2
f(2) = 2^3 -12*2 +7 = 8 -24 +7 = 15 -24 = -9
f(0) = 0^3 -12*0 +7 = 7
f(3) = 3^3 -12*3 +7= 27 -36 +7 = 34 - 36 = -2
4) ответ: max f(x) = f(0) = 7
minf(x) = f(2) = -9