В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Mary240106
Mary240106
18.01.2023 08:32 •  Алгебра

это Зарание Укажите соответствующий вывод для каждого неравенства. Обоснуйте свой ответ.
а) 5x2- 7x+ 13 ≥0 ;
− x2 + 16x − 64>0;
x2-5x +4≤0;
− x2 + 36<0.
1.Неравенство неимеетрешений.
2.Решением неравенства является вся числовая прямая.
3.Решением неравенства является одна точка.
4.Решением неравенства является закрытый промежуток.
5.Решением неравенства является открытый промежуток.
6.Решением неравенства является объединение двух промежутков. (8б)

2.Решить системунеравенств:
{█(5х^2-16х+11>[email protected]х-18≤0)┤
(5б)

3.Решить неравенство:

(х+4)/(х-9)≤0

4. Решите неравенство (х-5)(2х+4)(2х-8)≤0

Показать ответ
Ответ:
danilkuznets01
danilkuznets01
12.12.2022 16:51
Найдём 1 производную функции y'=3*x²-6 и приравняем её к нулю 3*х²=6⇒х1=√2 (min, производная меняет знак с - на + при возрастании х) и х2=-√2 (min, производная меняет знак с + на - при возрастании х). Левее х2 и правее х1 производная неограниченно возрастает, поэтому к точке х2 слева функция возрастает, и вправо от точки х1 функция также возрастает. В промежутке х1 и х2 функция убывает. 

ответ: точки экстремума х1 и х2. К точке х2 слева функция возрастает, и вправо от точки х1 функция также возрастает. В промежутке х1 и х2 функция убывает. 
0,0(0 оценок)
Ответ:

8.58. \ 4^{x} - (2a + 1)2^{x} + a^{2} + a < 0

(2^{x})^{2} - (2a + 1)2^{x} + a^{2} + a < 0

Замена: 2^{x} = t, \ t 0

t^{2} - (2a + 1)t + a^{2} + a < 0

Имеем квадратичную функцию f(t) = t^{2} - (2a + 1)t + a^{2} + a, графиком которой является парабола с ветвями, направленными вверх.

Найдем возможные точки пересечения параболы с осью абсцисс.

Для этого решим квадратное уравнение:

t^{2} - (2a + 1)t + a^{2} + a = 0

Найдем дискриминант данного уравнения:

D = (2a + 1)^{2} -4 \cdot 1 \cdot (a^{2} + a) = 4a^{2} + 4a + 1 - 4a^{2} - 4a = 1

Имеем D = 1 0, значит данное уравнение имеет ровно 2 корня:

t_{1} = \dfrac{(2a + 1) + \sqrt{1}}{2 \cdot 1} = \dfrac{2a + 1 + 1}{2} = a + 1

t_{2} = \dfrac{(2a + 1) - \sqrt{1}}{2 \cdot 1} = \dfrac{2a + 1 - 1}{2} = a

Имеем две точки пересечения параболы с осью абсцисс.

Пусть t_{1} < t_{2}. Тогда a + 1 < a; \ 1 < 0. Имеем неверное неравенство. Следовательно, при всех значениях параметра a имеем t_{1} t_{2}.

Тогда квадратичная функция f(t) будет меньше 0 при t \in (t_{2}; \ t_{1})

Последнее можно записать так:

\displaystyle \left \{ {{t t_{2}} \atop {t < t_{1}}} \right. \ \ \ \ \ \ \ \ \ \ \left \{ {{t a \ \ \ \ \ } \atop {t < a + 1}} \right.

Обратная замена:

\displaystyle \left \{ {{2^{x} a \ \ \ \ \ } \atop {2^{x} < a + 1}} \right.

Если a \leq -1, то имеем: \displaystyle \left \{ {{x \in \mathbb{R}} \atop {x \in \varnothing }} \right.

Решением такой системы неравенств является x \in \varnothing

Если -1, то имеем: \displaystyle \left \{ {{x \in \mathbb{R} \ \ \ \ \ \ \ \ \ \ \ \ \, } \atop {x < \log_{2}(a+1)}} \right.

Решением такой системы неравенств является x < \log_{2}(a+1)

Если a 0, то имеем: \displaystyle \left \{ {{x \log_{2}a \ \ \ \ \ \ \ } \atop {x < \log_{2}(a+1)}} \right.

Решением такой системы неравенств является интервал x \in (\log_{2}a; \ \log_{2}(a+1))

если a \in (-\infty; \ -1], то нет корней;если a \in (-1; \ 0], то x \in (-\infty; \ \log_{2}(a+1));если a \in (0; \ +\infty), то x \in (\log_{2}a; \ \log_{2}(a+1)).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота