Угол между двумя пересекающимися кривыми определяется как угол между двумя прямыми, касательными к кривым в точке их пересечения по формуле tgφ=(k1−k2)/(1+k1k2),
где k1 и k2 — угловые коэффициенты касательных к кривым в точке их пересечения P(x0,y0), т. е. частные значения в точке x0 производных от y по x из уравнений этих кривых: k1=tgα1=(dy1dx)x=x0;k2=tgα2=(dy2dx)x=x0. Находим абсциссу точки пересечения, приравнивая функции. x^2-5x+6 = x^2-2x+5, -3х = -1, х = 1/3. Определяем производные и угловые коэффициенты касательных. y'1 = 2x -5, к1 = 2*(1/3) - 5 = -13/3. y'2 = 2x -2, к2 = 2*(1/3) - 2 = -4/3. tg φ = (-4/3)-(-13/3)/(1+(-13/3)*(-4/3)) = 3/(1+(52/9)) = 0,442623. Угол φ равен arc tg 0,442623 = 0,416702 радиан или 23,87528°.
Угол между двумя пересекающимися кривыми определяется как угол между двумя прямыми, касательными к кривым в точке их пересечения по формуле tgφ=(k1−k2)/(1+k1k2),
где k1 и k2 — угловые коэффициенты касательных к кривым в точке их пересечения P(x0,y0),т. е. частные значения в точке x0 производных от y по x из уравнений этих кривых:
k1=tgα1=(dy1dx)x=x0;k2=tgα2=(dy2dx)x=x0.
Находим абсциссу точки пересечения, приравнивая функции.
x^2-5x+6 = x^2-2x+5, -3х = -1, х = 1/3.
Определяем производные и угловые коэффициенты касательных.
y'1 = 2x -5, к1 = 2*(1/3) - 5 = -13/3.
y'2 = 2x -2, к2 = 2*(1/3) - 2 = -4/3.
tg φ = (-4/3)-(-13/3)/(1+(-13/3)*(-4/3)) = 3/(1+(52/9)) = 0,442623.
Угол φ равен arc tg 0,442623 = 0,416702 радиан или 23,87528°.
(а+1)²=4а+1 раскроем квадрат суммы
а²+2а+1=4а+1 приведём подобные
а²-2а=0 вынесем общий множитель
а(а-2)=0 разложим уравнение на два попроще
а=0 или а-2=0
а=2.
При а=0 8х²– 3х=0 вынесем х за скобочки
х(8х-3)=0 найдём иксы
х=0 или 8х-3=0
8х=3
х=0,375.
При а=2 8х²– 3х=2 перенесём всё влево
8х²-3х-2=0 найдём дискриминант
D=9-4*8*(-2)=9+64=73 и иксы
ответ: х=0 или х=0,375 или х= или х=