K - первое число (k+1) - второе (k+2) - третье (k+3) - четвертое число 1) Находим разность квадратов первых двух последовательных натуральных чисел (k+1)² - k² = k²+2k+1-k² = (2k+1) 2) Находим разность квадратов следующих двух последовательных натуральных чисел (k+3)² - (k+2)² = k²+6k+9-(k² +4k+4)= k²+6k+9-k² -4k-4 = = (2k+5) 3) Сумма полученных разностей квадратов равна 38, получаем уравнение: (2k+1)+(2k+5) = 38 4k + 6 = 38 4k=38-6 4k=32 k = 32 : 4 k = 8 Итак, получаем: 8 - первое число 8+1=9 - второе 8+2=10 - третье 8+3=11 - четвертое число ответ: 8; 9; 10; 11.
(k+1) - второе
(k+2) - третье
(k+3) - четвертое число
1) Находим разность квадратов первых двух последовательных натуральных чисел
(k+1)² - k² = k²+2k+1-k² = (2k+1)
2) Находим разность квадратов следующих двух последовательных натуральных чисел
(k+3)² - (k+2)² = k²+6k+9-(k² +4k+4)= k²+6k+9-k² -4k-4 =
= (2k+5)
3) Сумма полученных разностей квадратов равна 38, получаем уравнение:
(2k+1)+(2k+5) = 38
4k + 6 = 38
4k=38-6
4k=32
k = 32 : 4
k = 8
Итак, получаем:
8 - первое число
8+1=9 - второе
8+2=10 - третье
8+3=11 - четвертое число
ответ: 8; 9; 10; 11.
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 38.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=38
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=38
2n+1+2n+5=38
4n=32
n=8
8; 9 и 10; 11
(11²-10²)+(9²-8²)=21+17
21+17=38 - верно