1) Верно. У пар-грамма смежные углы в сумме равны 180, поэтому внешний угол при одном угле равен второму углу. 2) √2 ~ 1,414, 2 + 1,414 = 3,414 < 3,5 - неверно. Сумма двух любых сторон треугольника должна быть больше третьей стороны. 3) Площадь круга S(кр) = pi*D^2/4 ~ 0,785*D^2 Квадрат, вписанный в круг, имеет диагональ, равную диаметру. d = D, сторона квадрата a = d/√2 = D/√2 Площадь квадрата S(кв) = a^2 = D^2/2 Отношение S(кв)/S(кр) = (D^2/2)/(0,785*D^2) = 1/(2*0.785) ~ 0,63 Нет, неверно. 4) Верно. Этот треугольник - прямоугольный, по т. Пифагора 2 + 6 = 8 При этом √8 = 2*√2, то есть катет равен половине гипотенузы. Значит, этот катет находится против угла 30 градусов.
Из условия задачи АВ = ВС, ΔАВС - равнобедренный, тогда медианы AE=СD. В равнобедренном треугольнике высота BF является и медианой, и биссектрисой. Т.к. точка О - точка пересечения медиан, через которую проходит и BF, то ∠АОС делится пополам. По условию задачи медианы взаимно-перпендикулярны, тогда ∠ АOF = ∠FOC = ∠AOC / 2 = 90° / 2 = 45° Учитывая, что ∠AFB = 90°, a ∠AOF = 45° ⇒ ∠OAF = 45° , тогда ΔAOF - равнобедренный, т.е. AF = OF
Пусть AF = x, OF = x, BO = 2x, BF = 3x ΔAFB - прямоугольный, тогда по теореме Пифагора АВ² = AF² + BF²
2) √2 ~ 1,414, 2 + 1,414 = 3,414 < 3,5 - неверно. Сумма двух любых сторон треугольника должна быть больше третьей стороны.
3) Площадь круга S(кр) = pi*D^2/4 ~ 0,785*D^2
Квадрат, вписанный в круг, имеет диагональ, равную диаметру.
d = D, сторона квадрата a = d/√2 = D/√2
Площадь квадрата S(кв) = a^2 = D^2/2
Отношение S(кв)/S(кр) = (D^2/2)/(0,785*D^2) = 1/(2*0.785) ~ 0,63
Нет, неверно.
4) Верно. Этот треугольник - прямоугольный, по т. Пифагора
2 + 6 = 8
При этом √8 = 2*√2, то есть катет равен половине гипотенузы.
Значит, этот катет находится против угла 30 градусов.
Из условия задачи АВ = ВС, ΔАВС - равнобедренный, тогда медианы AE=СD.
В равнобедренном треугольнике высота BF является и медианой, и биссектрисой. Т.к. точка О - точка пересечения медиан, через которую проходит и BF, то ∠АОС делится пополам. По условию задачи медианы взаимно-перпендикулярны, тогда
∠ АOF = ∠FOC = ∠AOC / 2 = 90° / 2 = 45°
Учитывая, что ∠AFB = 90°, a ∠AOF = 45° ⇒ ∠OAF = 45° , тогда ΔAOF - равнобедренный, т.е. AF = OF
Пусть AF = x, OF = x, BO = 2x, BF = 3x
ΔAFB - прямоугольный, тогда по теореме Пифагора
АВ² = AF² + BF²
Значит АС = 2AF = 2 *1 = 2, BF = 3 * 1 = 3
Найдем площадь
кв.ед.
ответе: S = 3 кв.ед.