1) пусть x- скорость автомобилиста, тогда скорость мотоциклиста x-20; s=vt; s которое проехал автомобилист= 5x, а расстояние, которое проехал мотоциклист= 7(x-20) так как расстояние они проехали одинаковое мы их приравниваем 5x=7(x-20) отсюда x=70( скорость автомобилиста).
Скорость мотоциклиста= 70-20=50
2)пусть x- скорость мотоциклиста, тогда скорость велосипедиста x-25; s=vt; t мотоциклиста=2 целых 15/60=2,25;
s которое проехал мотоциклист= 2,25x, а расстояние, которое проехал велосипедист= 6(х-25), так как расстояние они проехали одинаковое мы их приравниваем 2,25х=6(х-25) отсюда x=40( скорость мотоциклиста).Скорость велосипедиста= 40-25=15.
найдем координаты векторов АВ и АС, выходящих из вершины А, от координат конца вычтем координаты начала.
→АВ(4-3; 6-5); →АВ(1; 1); →АС(5-3; 5-5); →АВ(2; 0);
найдем длины этих векторов. длина →АВ равна √(1²+1²)=√2; длина →АС равна √(2²+0²)=2;
Найдем скалярное произведение этих же векторов. это сумма произведений соответствующих координат.
→АВ*→АВ=1*2+1*0=2
Разделим скалярное произведение векторов на произведение их модулей, найдя косинус угла между векторами.
2/(2√2)=√2/2, значит. внутренний угол при вершине А равен 45°
ответ 45°
1) пусть x- скорость автомобилиста, тогда скорость мотоциклиста x-20; s=vt; s которое проехал автомобилист= 5x, а расстояние, которое проехал мотоциклист= 7(x-20) так как расстояние они проехали одинаковое мы их приравниваем 5x=7(x-20) отсюда x=70( скорость автомобилиста).
Скорость мотоциклиста= 70-20=50
2)пусть x- скорость мотоциклиста, тогда скорость велосипедиста x-25; s=vt; t мотоциклиста=2 целых 15/60=2,25;
s которое проехал мотоциклист= 2,25x, а расстояние, которое проехал велосипедист= 6(х-25), так как расстояние они проехали одинаковое мы их приравниваем 2,25х=6(х-25) отсюда x=40( скорость мотоциклиста).Скорость велосипедиста= 40-25=15.