В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ciromerka
ciromerka
12.12.2022 18:42 •  Алгебра

ГОДОВАЯ КОНТРОЛЬНАЯ ПО АЛГЕБРЕ !
1)(7х-31)
2)(31-6с)(6с+31)
3)у выражение и найти его значение при х=31
8х(3я степень)-(2х+3)(4х(2я степень)-2х+1)

Показать ответ
Ответ:
timursharipov2
timursharipov2
19.04.2023 19:45

Для решения запишем формулу бинома Ньютона:

(a+b)^n=a^n+C_n^1a^{n-1}b+C_n^2a^{n-2}b^2+...+b^n

Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение a^n.

Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение b^n.

Рассмотрим многочлен S(x)=P(x)\cdot Q(x), где:

P(x)=(3x^7+6x^4-1)^{12}

Q(x)=(5x^2+2)^3

Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.

Для многочлена P(x)=(3x^7+6x^4-1)^{12}:

- степень определяется выражением (3x^7)^{12}=3^{12}\cdot x^{7\cdot12}=3^{12}\cdot x^{84}, то есть степень равна 84

- свободный член равен (-1)^{12}=1

Для многочлена Q(x)=(5x^2+2)^3:

- степень определяется выражением (5x^2)^3=5^3\cdot x^{2\cdot3}=125\cdot x^6, то есть степень равна 6

- свободный член равен 2^3=8

Наконец, для многочлена S(x)=P(x)\cdot Q(x) получим:

- степень определяется выражением x^{84}\cdot x^6=x^{84+6}=x^{90}, то есть степень равна 90

- свободный член равен 1\cdot8=8

Сумма степени и свободного члена многочлена S(x):

90+8=98

ответ: 98

0,0(0 оценок)
Ответ:
dzhuliya423555555555
dzhuliya423555555555
29.11.2021 01:03

Через одну точку можно провести бесконечное множество прямых

Итак точка с координатами (-2;1)

Линейная функция задается формулой у=кх+в, где к и в любые числа

Линейная функция возрастает, значит к>0

подставим координаты точки х=-2 у=1

-2=к*1+в отсюда  в=-2-1к, к>0

теперь попробуем написать формулу для возрастающей функции

к=1, тогда в=-2-1=-3 ⇒ у=1*х+3 или у=х+3

к=2, тогда в=2-1*1=1⇒ у=2х+1

к=3, тогда в=2-1*3=-1⇒ у=3х-1

Попробуем подставить к=0,6, тогда в=2-1*0,6=1,4 ⇒ у=0,6х+1,4

Таким образом меняя к (при этом к>0)  мы будет получать бесконечное количество формул для возрастающей функции

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота