Если прямая (графиком является прямая) пересекает ось Х то координата У=0, подставим в уравнение 0=1/9х-4 -1/9х= -4 Х= -4:(-1/4)= -4*(-4)=16 А(16;0) координаты точки пересечения.
У= -2х+6 (4;2) если точка принадлежит графику, то её координаты , при подстановке , обращают уравнение в числовое тождество 2= -2*4+6 2= -2 не принадлежит (-3;0) 0= -2*(-3) +6 0=6+6 0=12 не принадлежит
(3;1) 1= -2*3+6 1=-6+6 1=0 не принадлежит
У=16х-63. К1=16 У= -2х+9. К2= -2 Коэффициенты при Х не равны, значит прямые пересекаются. Координаты точки пересечения общие и мы их можем приравнять 16х-63= -2х+9 16х+2х=9+63 18х=72 Х=4 это координата Х подставим в любое уравнение и найдём координату У
У= -2*4+9= -8+9=1 С (4;1) Координаты точки пересечения.
Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
У=0, подставим в уравнение
0=1/9х-4
-1/9х= -4
Х= -4:(-1/4)= -4*(-4)=16
А(16;0) координаты точки пересечения.
У= -2х+6
(4;2) если точка принадлежит графику, то её координаты , при подстановке , обращают уравнение в числовое тождество
2= -2*4+6
2= -2 не принадлежит
(-3;0)
0= -2*(-3) +6
0=6+6
0=12 не принадлежит
(3;1)
1= -2*3+6
1=-6+6
1=0 не принадлежит
У=16х-63. К1=16
У= -2х+9. К2= -2
Коэффициенты при Х не равны, значит прямые пересекаются. Координаты точки пересечения общие и мы их можем приравнять
16х-63= -2х+9
16х+2х=9+63
18х=72
Х=4
это координата Х подставим в любое уравнение и найдём координату
У
У= -2*4+9= -8+9=1
С (4;1)
Координаты точки пересечения.
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)