Начнем со второй системы. Она решается устно. Первое уравнение пропорционально второму с коэффициентом пропорциональности, равным 2. 24*2 = 24*х, откуда х = 2. Тогда у1 = 2, у2 = -2. ответ: (2; 2), (2; -2).
В третьей достаточно сложить оба уравнения. получим: х^2 = 1, откуда х1 = 1, тогда у1 = 5, и х2 = -1, тогда у2 = 5. ответ: (1; 5), (-1; 5)
В первой системе приравняем первое значение у ко второму, получим: 5x^2 - 9x = 5x - 9, откуда х1 = 6, тогда у1 = 21, и х2 = - 2/5, тогда у2 = -11. ответ: (6; 21), (- 2/5; - 11)
Объяснение:
Как я понял, устройства все одинаковые.
С вероятностью p1= 1/2 они дают 0, с p2=1/3 дают 1 В, и с p3=1/6 дают 3 В.
А) Сумма 2 выходов означает, что одно устройство выдаст U1, а другое U2.
Вероятность, что произойдет именно два таких выхода одновременно, равна произведению вероятностей каждого из выходов.
0+0=0: p1*p1=1/2*1/2=1/4
0+1=1: p1*p2=1/2*1/3=1/6
0+3=3: p1*p3=1/2*1/6=1/12
1+0=1: p2*p1=1/3*1/2=1/6
1+1=2: p2*p2=1/3*1/3=1/9
1+3=4: p2*p3=1/3*1/6=1/18
3+0=3: p3*p1=1/6*1/2=1/12
3+1=4: p3*p2=1/6*1/3=1/18
3+3=6: p3*p3=1/6*1/6=1/36
Для проверки сложим все эти вероятности, сумма должна быть 1.
1/4+1/6+1/12+1/6+1/9+1/18+1/12+1/18+1/36 =
= 9/36+6/36+3/36+6/36+4/36+2/36+3/36+2/36+1/36 =
= (9+6+3+6+4+2+3+2+1)/36 = 36/36 = 1
Все правильно.
Б) Результат в 1 В может получиться двумя :
1 = 0+1 = 1+0
Вероятности одинаковые, 1/6 и 1/6.
Поэтому суммарная вероятность равна
P(1) = 1/6+1/6 = 1/3
Из 360 испытаний получится примерно 360/3 = 120 испытаний с таким результатом.
ответ: 120
Первое уравнение пропорционально второму с коэффициентом пропорциональности, равным 2.
24*2 = 24*х, откуда х = 2.
Тогда у1 = 2, у2 = -2.
ответ: (2; 2), (2; -2).
В третьей достаточно сложить оба уравнения.
получим: х^2 = 1, откуда х1 = 1, тогда у1 = 5, и х2 = -1, тогда у2 = 5.
ответ: (1; 5), (-1; 5)
В первой системе приравняем первое значение у ко второму, получим:
5x^2 - 9x = 5x - 9, откуда х1 = 6, тогда у1 = 21, и х2 = - 2/5, тогда у2 = -11.
ответ: (6; 21), (- 2/5; - 11)