Задача 1) Пусть х (км/ч) - скорость первого автомобилиста, тогда второй автомобилист ехал первую половину пути (х-12) км/ч.S (км) - весь путь. Время, затраченное первым автомобилистом на весь путь:S/х (ч). Время, затраченное вторым автомобилистом на первую половину пути:S/ (х-12) (ч), а время, затраченное вторым автомобилистом на вторую половину пути: S/70 (ч). Составим уравнение.S/х= 0,5S/ х-12 + 0,5S/70S*70(х-12)=0,5S*70+0,5S *х(х-12)S*(70х-840) = S*35х +S*0,5*(х^2-12х)Разделим всё на S70х-840=35х+0,5х^2-6х70х-35х+6х-0,5х^2-840=0Решаем квадратное уравнение-0,5х^2+41х-840=0х1,2=(-41 +- (корень квадратный из:41^2 - 4 *(-0,5)*(-840)) / 2*(-0,5)х1,2=(-41+- (корень квадратный из: 1681-1680)) / (-1)х1,2=(-41 +-1) / (-1)х1= (-41+1)/ (-1)=-40: (-1)=40х2= (-41-1)/ (-1) = -42: (-1) =42 Скорость 40 км/ч не подходит, т.к. по условию задачи скорость первого автомобилиста больше 41 км/ч, следовательно скорость первого автомобилиста: 42 км/ч ответ: скорость первого автомобилиста 42 км/ч Задача 2) Пусть х км в час скорость лодки в неподвижной воде. (х+3) км в час скорость лодки по течению, (х-3) км в час скорость лодки против течения Плот км со скоростью реки, т.е 3 км в час 51:3= 17 часов плыл плот, Лодка отправилась на час позже, т.е плыла 17-1=16 часов За это время лодка проплыла путь в 140 км по течению и 140 км против течения Составим уравнение: 140/(х+3) + 140/ (х-3)= 16 Приведем дроби к общему знаменателю 140( х-3+х+3)/(х²-9) = 16, раздели обе части уравнения на 4 и умножим на (х²-9)≠0 получим: 35·2х=4(х²-9). 4х²-70х-36=0. 2х²-35х-18=0 D=35²+8·18=1225+144=1369=37² x=(35-37)/4 <0 не удовлетворяет условию задачи или х=(35+37)/4=18 ответ 18 км в час скорость лодки в неподвижной воде
Задача 2) Пусть х км в час скорость лодки в неподвижной воде.
(х+3) км в час скорость лодки по течению,
(х-3) км в час скорость лодки против течения
Плот км со скоростью реки, т.е 3 км в час
51:3= 17 часов плыл плот,
Лодка отправилась на час позже, т.е плыла 17-1=16 часов
За это время лодка проплыла путь в 140 км по течению и 140 км против течения
Составим уравнение:
140/(х+3) + 140/ (х-3)= 16
Приведем дроби к общему знаменателю
140( х-3+х+3)/(х²-9) = 16,
раздели обе части уравнения на 4 и умножим на (х²-9)≠0
получим:
35·2х=4(х²-9).
4х²-70х-36=0.
2х²-35х-18=0
D=35²+8·18=1225+144=1369=37²
x=(35-37)/4 <0 не удовлетворяет условию задачи или х=(35+37)/4=18
ответ 18 км в час скорость лодки в неподвижной воде
По формулам сложения находим sin(15 °) и cos(15°)
sin(15°) = sin(45° - 30°) = sin(45°) * cos(30°) - cos(45°) * sin(30°) =
= √2/2 * √3/2 - √2/2 * 1/2 = (√6 -√2)/4.
cos(15°) = cos(45° - 30°) = cos(45°) * cos(30°) - sin(45°) * sin(30°) =
= √2/2 * √3/2 +√2/2 * 1/2 = (√6 +√2)/4.
Далее используем формулы приведения.
Заметим что
75°=90°-15°
105°=90°+15°
sin (75°) = sin(90° - 15°) = cos (15°) = (√6 +√2) /4
cos (75°) = cos(90° - 15°) = sin (15°) = (√6 -√2) /4
sin (105°) = sin(90° + 15°) = cos (15°) = (√6 +√2) /4
cos (105°) = cos(90° + 15°) = - sin (15°) = - (√6 -√2) /4